Matching Points with Rectangles and Squares

Sergey Bereg, Nikolaus Mutsanas \& Alexander Wolff

23 January 2006

Outline

- Introduction
- Matching in graphs and in the plane
- Previous results
- Open problems
- Rectangles
- General position
- 1/2-Approximation
- 4/7-Approximation
- Squares
- Is there a strong realization?
- Application to map labeling
- NP-completeness

Outline

- Introduction
- Matching in graphs and in the plane
- Previous results
- Open problems
- Rectangles
- General position
- 1/2-Approximation
- 4/7-Approximation
- Squares
- Is there a strong realization?
- Application to map labeling
- NP-completeness

Matching algorithms

Maximum Matching in graphs
[Micali \& Vazirani '80]
$O(\sqrt{n} m)$

Euclidean Minimum-Weight Perfect Matching
(matching points with line segments of minimum total length)
[Vaidya '88]
[Varadarajan \& Agarwal '99]

Matching with segments, rectangles, squares, disks...

Matching in graphs and in the plane
Previous results
Open problems

Matching in the plane

Definition

Matching in the plane

Definition

- Matching is perfect: covers all points.
- Matching is strong: no overlap.

Matching in the plane

Definition

- Matching is perfect: covers all points.
- Matching is strong: no overlap.

Already known results

Let P be a set of $2 n$ points in the plane.
Theorem (Rendl \& Woeginger, '93)
It is NP-hard to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al. '04)
If P is in general position (no two points on a horiz./vert. line), then P admits

Already known results

Let P be a set of $2 n$ points in the plane.
Theorem (Rendl \& Woeginger, '93)
It is NP-hard to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al. '04)

If P is in general position (no two points on a horiz./vert. line), then P admits

- a perfect disk matching and a perfect square matching.
- a strong disk matching covering at least 25% of P.
- a strong square matching covering at least 40% of P.

Already known results

Let P be a set of $2 n$ points in the plane.
Theorem (Rendl \& Woeginger, '93)
It is NP-hard to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al. '04)

If P is in general position (no two points on a horiz./vert. line), then P admits

- a perfect disk matching and a perfect square matching.
- a strong disk matching covering at least 25% of P.
- a strong square matching covering at least 40% of P.

Already known results

Let P be a set of $2 n$ points in the plane.
Theorem (Rendl \& Woeginger, '93)
It is NP-hard to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al. '04)
If P is in general position (no two points on a horiz./vert. line), then P admits

- a perfect disk matching and a perfect square matching.
- a strong disk matching covering at least 25% of P.
- a strong square matching covering at least 40% of P.

Open Problems

Questions

- How many points can be matched strongly?
- Does a given matching have a strong realization?

	matching size	ex. strong realization?
segments	100%	$O(n \log n)$
rectangles	100%	$O(n \log n)$
squares	40%	$?$
disks	25%	$?$

Points in general position

Open Problems

Questions

- How many points can be matched strongly?
- Does a given matching have a strong realization?

	matching size	ex. strong realization?
segments	100%	$O(n \log n)$
rectangles	$100 \% / ?$	$O(n \log n)$
squares	$40 \% / ?$	$?$
disks	$25 \% / ?$	$?$

Points in general position / General point sets

Open Problems

Questions

- How many points can be matched strongly?
- Does a given matching have a strong realization?

	matching size	ex. strong realization?
segments	100%	$O(n \log n)$
rectangles	$100 \% / 57 \%$	$O(n \log n)$
squares	$40 \% / ?$	$? / O\left(n^{2} \log n\right)$
disks	$25 \% / ?$	$?$

Points in general position / General point sets

Outline

- Introduction
- Matching in graphs and in the plane
- Previous results
- Open problems
- Rectangles
- General position
- 1/2-Approximation
- 4/7-Approximation
- Squares
- Is there a strong realization?
- Application to map labeling
- NP-completeness

General position

General position

General position

General position

No general position

No general position

No general position

1/2-Approximation

Divide into subsets \rightarrow match subsets \rightarrow join

1/2-Approximation

Divide into subsets \rightarrow match subsets \rightarrow join

1/2-Approximation

Divide into subsets \rightarrow match subsets

1/2-Approximation

Divide into subsets \rightarrow match subsets

1/2-Approximation

Divide into subsets \rightarrow match subsets \rightarrow join

1/2-Approximation

Divide into subsets \rightarrow match subsets \rightarrow join

1/2-Approximation - worst case

Worst Case

Matching with $n / 2$ points.

1/2-Approximation - worst case

Worst Case

Optimal matching with $n-2$ points.

4/7-Approximation

Basic Idea:

For an arbitrary point set P

4/7-Approximation

Basic Idea:

For an arbitrary point set P - Partition P into subsets

 - Match at least 4/7 of the points in each subset- Overall matchina covers at least $4 / 7$ of P

4/7-Approximation

Basic Idea:

For an arbitrary point set P

- Partition P into subsets
- Match at least $4 / 7$ of the points in each subset
- Overall matching covers at least $4 / 7$ of P

4/7-Approximation

Basic Idea:

- $14 / 18 \geq 4 / 7$

For an arbitrary point set P

- Partition P into subsets
- Match at least $4 / 7$ of the points in each subset
- Overall matching covers at least $4 / 7$ of P

4/7-Approximation

$$
v_{1} \text { even } \quad v_{1}=1 \quad v_{1} \geq 3, \text { odd }
$$

v_{1} even

4/7-Approximation

$$
v_{1} \text { even } \quad v_{1}=1 \quad v_{1} \geq 3, \text { odd }
$$

$6 / 6 \quad v_{1}$ even

\rightarrow match all points

4/7-Approximation

v_{1} even

$$
v_{1}=1
$$

$$
v_{1} \geq 3, \text { odd }
$$

$v_{1} \geq 3$, odd

4/7-Approximation

v_{1} even

$$
v_{1}=1
$$

$v_{1} \geq 3$, odd

$$
2 / 3 \quad v_{1} \geq 3, \text { odd }
$$

\rightarrow match all but one point

4/7-Approximation

v_{1} even

$$
v_{1}=1
$$

$$
v_{1} \geq 3, \text { odd }
$$

$$
v_{1}=1
$$

4/7-Approximation

$$
6 / 7 \quad v_{1}=1, v_{2} \text { even }
$$

\rightarrow match v_{2}

4/7-Approximation

\rightarrow match v_{1} to v_{2}

4/7-Approximation

$$
4 / 6 \quad v_{1}=1, \quad v_{2} \geq 5, \text { odd }
$$

\rightarrow match v_{2}

4/7-Approximation

$$
4 / 4 \quad v_{1}=1, v_{2}=3(\text { good })
$$

\rightarrow match all points

4/7-Approximation

$$
v_{1}=1, v_{2}=3(\mathrm{bad})
$$

4/7-Approximation

$$
6 / 8 \quad v_{1}=1, v_{2}=3(\mathrm{bad}), v_{3} \text { even }
$$

\rightarrow match v_{2} and v_{3}

4/7-Approximation

$$
8 / 11 \quad v_{1}=1, v_{2}=3(\mathrm{bad}), v_{3} \geq 5 \text { odd }
$$

\rightarrow match v_{2} and v_{3}

4/7-Approximation

4/7-Approximation

$$
4 / 5 \quad v_{1}=1, v_{2}=3(\mathrm{bad}), v_{3}=1(\mathrm{good})
$$

\rightarrow match v_{2} with v_{3}

4/7-Approximation

$$
v_{1}=1, v_{2}=3(\mathrm{bad}), v_{3}=1(\mathrm{bad})
$$

4/7-Approximation

$$
v_{1}=1, v_{2}=3(\mathrm{bad}), v_{3}=1(\mathrm{bad})
$$

\rightarrow use v_{4}

4/7-Approximation

$$
v_{1}=1, v_{2}=3(\mathrm{bad}), v_{3}=1(\mathrm{bad})
$$

\rightarrow use v_{4}

4/7-Approximation

Theorem (Bereg, Mutsanas \& Wolff, '05)

In any set P of n points, $\geq 4 / 7 \cdot n-5$ points can be matched with rectangles in $O(n \log n)$ time.

But.
 There are point sets, for which $\leq 2\lfloor n / 3\rfloor$ points can be matched!

Theorem (Bereg, Mutsanas \& Wolff, '05)

In any set P of n points, $\geq 4 / 7 \cdot n-5$ points can be matched with rectangles in $O(n \log n)$ time.

But...

There are point sets, for which $\leq 2\lfloor n / 3\rfloor$ points can be matched!

Theorem (Bereg, Mutsanas \& Wolff, '05)

In any set P of n points, $\geq 4 / 7 \cdot n-5$ points can be matched with rectangles in $O(n \log n)$ time.

But...

There are point sets, for which $\leq 2\lfloor n / 3\rfloor$ points can be matched!

Theorem (Bereg, Mutsanas \& Wolff, '05)

In any set P of n points, $\geq 4 / 7 \cdot n-5$ points can be matched with rectangles in $O(n \log n)$ time.

But...

There are point sets, for which $\leq 2\lfloor n / 3\rfloor$ points can be matched!

Outline

- Introduction
- Matching in graphs and in the plane
- Previous results
- Open problems
- Rectangles
- General position
- 1/2-Approximation
- 4/7-Approximation
- Squares
- Is there a strong realization?
- Application to map labeling
- NP-completeness

Minimal squares

Minimal squares: points lie on the boundary.

Minimal squares

Minimal squares: points lie on the boundary.

Sliding squares

Is there a strong realization?

Is there a strong realization?

Is there a strong realization?

Help from map labeling

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height B ?

Help from map labeling

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height B ?

Help from map labeling

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height B ?

Help from map labeling

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$.
Question: Is there a labeling of height B ?

Theorem (Kim, Shin \& Yang, '99)

Rectilinear segment labeling is solvable in $O\left(n^{2} \log n\right)$ time.

Squares - canonical form

Let squares slide

- for vertical kernels leftwards as far as possible.
- for horizontal kernels downwards as far as possible.

When does a square stop sliding?

Squares - canonical form

Let squares slide

- for vertical kernels leftwards as far as possible.
- for horizontal kernels downwards as far as possible.

When does a square stop sliding?

Squares - canonical form

Let squares slide

- for vertical kernels leftwards as far as possible.
- for horizontal kernels downwards as far as possible.

When does a square stop sliding?

Squares - canonical form

Let squares slide

- for vertical kernels leftwards as far as possible.
- for horizontal kernels downwards as far as possible.

When does a square stop sliding?

Squares - canonical form

Let squares slide

- for vertical kernels leftwards as far as possible.
- for horizontal kernels downwards as far as possible.

When does a square stop sliding?

Observations

- The resulting positions can be computed in advance.
- Every square has $O(n)$ relevant positions.

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^{2}$, matching $M \subseteq\binom{P}{2}$
Question: Is there a strong square realization of M ?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^{2}$, matching $M \subseteq\binom{P}{2}$
Question: Is there a strong square realization of M ?

- Do kernels overlap?
$O(n \log n)$
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^{2}$, matching $M \subseteq\binom{P}{2}$
Question: Is there a strong square realization of M ?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^{2}$, matching $M \subseteq\binom{P}{2}$
Question: Is there a strong square realization of M ?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.
$O(n \log n)$
$O\left(n^{2}\right)$
$O\left(k_{\max } \cdot n \log n\right)$

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^{2}$, matching $M \subseteq\binom{P}{2}$
Question: Is there a strong square realization of M ?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.
$O(n \log n)$
$O\left(n^{2}\right)$
$O(n \cdot n \log n)$

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^{2}$, matching $M \subseteq\binom{P}{2}$
Question: Is there a strong square realization of M ?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.
$O(n \log n)$
$O\left(n^{2}\right)$
$O\left(n^{2} \log n\right)$

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^{2}$, matching $M \subseteq\binom{P}{2}$
Question: Is there a strong square realization of M ?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.
$O(n \log n)$
$O\left(n^{2}\right)$
$O\left(n^{2} \log n\right)$

Conclusion

The decision problem can be solved in $O\left(n^{2} \log n\right)$ time.

Labeling points with sliding labels

Labeling points with sliding labels

Labeling points with sliding labels

NP-completeness

ESPSM

Given: Point set $P \subseteq \mathbb{R}^{2}$
 Question: Does a strong perfect square-matching exist?

Theorem (Bereg, Mutsanas \& Wolff '05) ESPSM is NP-hard.

Proof.
By reduction from PLANAR 3-SAT to ESPSM.

NP-completeness

ESPSM

Given: Point set $P \subseteq \mathbb{R}^{2}$
Question: Does a strong perfect square-matching exist?

Theorem (Bereg, Mutsanas \& Wolff '05)
 ESPSM is NP-hard.

Proof.
By reduction from PLANAR 3-SAT to ESPSM.

NP-completeness

ESPSM

Given: Point set $P \subseteq \mathbb{R}^{2}$
Question: Does a strong perfect square-matching exist?
Theorem (Bereg, Mutsanas \& Wolff '05)
ESPSM is NP-hard.

Proof.

By reduction from PLANAR 3-SAT to ESPSM.

Outline of the Reduction

Input: planar 3-SAT formula $\varphi=$ $\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge \ldots$
Goal: Point set $P \subseteq \mathbb{R}^{2}$ with:
P admits s. p. square-matching $\Leftrightarrow \varphi$ satisfiable.

Outline of the Reduction

Input: planar 3-SAT formula $\varphi=$ $\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge \ldots$
Goal: Point set $P \subseteq \mathbb{R}^{2}$ with:
P admits s. p. square-matching $\Leftrightarrow \varphi$ satisfiable.

Outline of the Reduction

Input: planar 3-SAT formula $\varphi=$ $\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge \ldots$
Goal: Point set $P \subseteq \mathbb{R}^{2}$ with:
P admits s. p. square-matching $\Leftrightarrow \varphi$ satisfiable.

Variable Gadget

$$
v=\text { true }
$$

Variable Gadget

$$
v=\text { false }
$$

Outline of the Reduction

Input: planar 3-SAT formula $\varphi=$ $\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge \ldots$
Goal: Point set $P \subseteq \mathbb{R}^{2}$ with:
P admits s. p. square-matching $\Leftrightarrow \varphi$ satisfiable.

Clause Gadget

Conclusions

- Upper bound for rectangle-matching 2/3.\# points
- With rectangles we can match $\geq 4 / 7 \cdot \#$ points
- Is there a strong square-realization? $O\left(n^{2} \log n\right)$ time
- Is there a perfect strong square-matching? NP-hard

Open questions

- Match 2/3 of the points with rectangles?
- Approximation algorithms?
- Perfect weak square-matching also NP-hard? Rectangle-matching? Circle-matching?

Conclusions

- Upper bound for rectangle-matching

2/3 $\#$ \# points

- With rectangles we can match
$\geq 4 / 7 \cdot \#$ points
- Is there a strong square-realization?
$O\left(n^{2} \log n\right)$ time
- Is there a perfect strong square-matching?

NP-hard

Open questions

- Match $2 / 3$ of the points with rectangles? (solved!)
- Approximation algorithms?
- Perfect weak square-matching also NP-hard? Rectangle-matching? Circle-matching?

Thank you for your attention!

