Matching Points with Rectangles and Squares

Sergey Bereg, Nikolaus Mutsanas & Alexander Wolff

23 January 2006

30

3

ヘロト ヘアト ヘビト ヘ

Outline

Introduction

- Matching in graphs and in the plane
- Previous results
- Open problems

• Rectangles

- General position
- 1/2-Approximation
- 4/7-Approximation

Squares

- Is there a strong realization?
- Application to map labeling
- NP-completeness

Э

ntroduction	Matching in graphs and in the plane
Rectangles	
Squares	Open problems

Outline

• Introduction

- Matching in graphs and in the plane
- Previous results
- Open problems

Rectangles

- General position
- 1/2-Approximation
- 4/7-Approximation

• Squares

- Is there a strong realization?
- Application to map labeling
- NP-completeness

Matching in graphs and in the plane Previous results Open problems

Matching algorithms

Maximum Matching in graphs [Micali & Vazirani '80]

Euclidean Minimum-Weight Perfect Matching (matching points with line segments of minimum total length) [Vaidya '88] $O(n^{2.5} \log^4 n)$ [Varadarajan & Agarwal '99] $O((n/\varepsilon^3) \log^6 n)$

Matching with segments, rectangles, squares, disks...

30

< □ > < 同 > < 回 > < 回

٠

Matching in graphs and in the plane Previous results Open problems

Matching in the plane

30

Matching in graphs and in the plane

Matching in the plane

Definition

- Matching is perfect: covers all points.
- Matching is strong: no overlap.

30

Matching in graphs and in the plane

Matching in the plane

Definition

- Matching is perfect: covers all points.
- Matching is strong: no overlap.

30

Matching in graphs and in the plane Previous results Open problems

Already known results

Let P be a set of 2n points in the plane.

Theorem (Rendl & Woeginger, '93)

It is **NP-hard** to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al. '04)

If P is in general position (no two points on a horiz./vert. line), then P admits

- a perfect disk matching and a perfect square matching.
- a strong disk matching covering at least 25% of P.
- a strong square matching covering at least 40% of P.

6

Matching in graphs and in the plane Previous results Open problems

Already known results

Let P be a set of 2n points in the plane.

Theorem (Rendl & Woeginger, '93)

It is **NP-hard** to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al. '04)

If P is in general position (no two points on a horiz./vert. line), then P admits

- a perfect disk matching and a perfect square matching.
- a strong disk matching covering at least 25% of P.
- a strong square matching covering at least 40% of P.

6

30

ヘロト ヘアト ヘヨト ヘ

Matching in graphs and in the plane Previous results Open problems

Already known results

Let P be a set of 2n points in the plane.

Theorem (Rendl & Woeginger, '93)

It is **NP-hard** to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al. '04)

If P is in general position (no two points on a horiz./vert. line), then P admits

- a perfect disk matching and a perfect square matching.
- a strong disk matching covering at least 25% of P.
- a strong square matching covering at least 40% of P.

30

イロト イヨト イヨト イ

Matching in graphs and in the plane Previous results Open problems

Already known results

Let P be a set of 2n points in the plane.

Theorem (Rendl & Woeginger, '93)

It is **NP-hard** to decide whether P admits a strong rectilinear segment matching.

Theorem (Ábrego et al. '04)

If P is in general position (no two points on a horiz./vert. line), then P admits

- a perfect disk matching and a perfect square matching.
- a strong disk matching covering at least 25% of P.
- a strong square matching covering at least 40% of P.

6

30

ヘロト ヘアト ヘヨト ヘ

Matching in graphs and in the plane Previous results Open problems

Open Problems

Questions

- How many points can be matched strongly?
- Does a given matching have a strong realization?

	matching size	ex. strong realization?
segments	100%	<i>O</i> (<i>n</i> log <i>n</i>)
rectangles	100%	<i>O</i> (<i>n</i> log <i>n</i>)
squares	40%	?
disks	25%	?

Points in general position

7

30

Matching in graphs and in the plane Previous results Open problems

Open Problems

Questions

- How many points can be matched strongly?
- Does a given matching have a strong realization?

	matching size	ex. strong realization?
segments	100%	<i>O</i> (<i>n</i> log <i>n</i>)
rectangles	100% / ?	<i>O</i> (<i>n</i> log <i>n</i>)
squares	40% / ?	?
disks	25% / ?	?

Points in general position / General point sets

Matching in graphs and in the plane Previous results Open problems

Open Problems

Questions

- How many points can be matched strongly?
- Does a given matching have a strong realization?

	matching size	ex. strong realization?
segments	100%	<i>O</i> (<i>n</i> log <i>n</i>)
rectangles	100% / 57%	<i>O</i> (<i>n</i> log <i>n</i>)
squares	40% / ?	? / O(n ² log n)
disks	25% / ?	?

Points in general position / General point sets

Outline

- Matching in graphs and in the plane
- Previous results
- Open problems

Rectangles

- General position
- 1/2-Approximation
- 4/7-Approximation

Squares

- Is there a strong realization?
- Application to map labeling
- NP-completeness

3

< 🗇 ▶

General position 1/2-Approximation 4/7-Approximation

General position

٠

.

ъ

General position

General position

General position

General position

ъ

General position

General position

General position

No general position

30

ъ

э

< 🗇

General position

No general position

30

ъ

< 🗇

General position

No general position

1/2-Approximation

30

3

э

1/2-Approximation

1/2-Approximation

1/2-Approximation

Introduction General position Rectangles 1/2-Approximation Squares 4/7-Approximation

1/2-Approximation

Divide into subsets \rightarrow match subsets \rightarrow join

30

э

1/2-Approximation

Introduction 1/2-Approximation Rectangles Squares

1/2-Approximation - worst case

Worst Case

Matching with n/2 points.

30

э

< 🗇 ▶

1/2-Approximation - worst case

Worst Case

Optimal matching with n-2 points.

30

э

4/7-Approximation

4/7-Approximation

Basic Idea:

For an arbitrary point set P

- Partition P into subsets
- Match at least 4/7 of the
- Overall matching covers at

< 🗇

30

Introduction General position Rectangles 1/2-Approximation Squares 4/7-Approximation

4/7-Approximation

Basic Idea:

- •
- ••••••

For an arbitrary point set P

- Partition P into subsets
- Match at least 4/7 of the points in each subset
- Overall matching covers at least 4/7 of *P*

30

Introduction Rectangles Squares 4/7-Approximation

4/7-Approximation

Basic Idea:

For an arbitrary point set P

- Partition P into subsets
- Match at least 4/7 of the • points in each subset

30

13

ъ

Introduction Rectangles Squares 4/7-Approximation

4/7-Approximation

Basic Idea:

For an arbitrary point set P

- Partition P into subsets
- Match at least 4/7 of the • points in each subset
- Overall matching covers at least 4/7 of P

30

13

ъ

	Introduction Rectangles Squares	General position 1/2-Approximation 4/7-Approximation	
7-Approximation			
v_1 even	$v_1 = 1$	$v_1 \ge 3$, odd	

- v₁ even

	Introduction Rectangles Squares	General position 1/2-Approximation 4/7-Approximation	
7-Approximation			
v_1 even	$v_1 = 1$	$v_1 \ge 3$, odd	

4/

æ
	Introduction Rectangles Squares	General position 1/2-Approximation 4/7-Approximation	
7-Approximation			
v_1 even	$v_1 = 1$	$v_1 \geq 3$, odd	

.

٠

.

4

토 🕨 🖈 토 🕨

æ

A D > A B
A

	Introduction Rectangles Squares	General position 1/2-Approximation 4/7-Approximation	
7-Approximation			
v_1 even	$v_1 = 1$	$v_1 \geq 3$, odd	

 \rightarrow match all but one point

.

	Introduction Rectangles Squares	General position 1/2-Approximation 4/7-Approximation	
1/7-Approximation			
v_1 even	$v_1 = 1$	$v_1 \ge 3$, odd	

٠

◆□ > ◆□ > ◆豆 > ◆豆 >

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

$$2/2$$
 $v_1 = 1, v_2 = 1$

 \rightarrow match v_1 to v_2

30

E 990

ヘロト 人間 とくほとくほとう

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

30

= 900

ヘロン ヘアン ヘビン ヘビン

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

$$v_1 = 1, v_2 = 3$$
 (bad)

-

.

30

E 990

ヘロン 人間 とくほとく ほとう

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

30

= 990

・ロト ・ 理 ト ・ ヨ ト ・

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

$$4/5 v_1 = 1, v_2 = 3 (bad), v_3 = 1 (good)$$
$$\rightarrow match v_2 (with v_3)$$

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

$$v_1 = 1, v_2 = 3$$
 (bad), $v_3 = 1$ (bad)

.

30

E 990

イロト 不得 とくほと くほとう

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

30

E 990

イロト 不得 とくほ とくほ とう

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

In any set *P* of *n* points, $\ge 4/7 \cdot n - 5$ points can be matched with rectangles in $O(n \log n)$ time.

But...

There are point sets, for which $\leq 2\lfloor n/3 \rfloor$ points can be matched!

15

30

3

ヘロン 人間 とくほ とくほ とう

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

In any set *P* of *n* points, $\ge 4/7 \cdot n - 5$ points can be matched with rectangles in $O(n \log n)$ time.

But...

There are point sets, for which $\leq 2\lfloor n/3 \rfloor$ points can be matched!

15

30

э.

ヘロト ヘアト ヘビト ヘビト

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

In any set *P* of *n* points, $\ge 4/7 \cdot n - 5$ points can be matched with rectangles in $O(n \log n)$ time.

But...

There are point sets, for which $\leq 2\lfloor n/3 \rfloor$ points can be matched!

15

э.

ntroduction	General position
Rectangles	1/2-Approximation
Squares	4/7-Approximation

In any set *P* of *n* points, $\ge 4/7 \cdot n - 5$ points can be matched with rectangles in $O(n \log n)$ time.

But...

There are point sets, for which $\leq 2\lfloor n/3 \rfloor$ points can be matched!

30

15

▲■▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Introduction Is there a strong reali Rectangles Application to map lab Squares NP-completeness

Outline

Introduction

- Matching in graphs and in the plane
- Previous results
- Open problems

• Rectangles

- General position
- 1/2-Approximation
- 4/7-Approximation

Squares

- Is there a strong realization?
- Application to map labeling
- NP-completeness

16

< 回 > < 三 > < 三

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	

Minimal squares

Minimal squares: points lie on the boundary.

Bereg, Mutsanas & Wolff

30

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	

Minimal squares

Minimal squares: points lie on the boundary.

Bereg, Mutsanas & Wolff

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	

Sliding squares

Bereg, Mutsanas & Wolff

18

► < E >

æ

Introduction Is there a strong realization? Rectangles Application to map labeling Squares NP-completeness

Is there a strong realization?

30

ъ

Is there a strong realization? Squares Is there a strong realization?

30

э

Introduction Rectangles Squares NP-completeness Is there a strong realization? Application to map labeling NP-completeness

Bereg, Mutsanas & Wolff

19

30

э

Is there a strong realization? Application to map labeling NP-completeness

Help from map labeling

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height *B*?

30

20

イロン イ理 とくほう くほ

Is there a strong realization?

Help from map labeling

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height B?

30

20

Э

< 17 ▶

Is there a strong realization?

Help from map labeling

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height B?

30

20

Is there a strong realization? Application to map labeling NP-completeness

Help from map labeling

Labeling rectilinear segments

Given: Set of rectilinear segments, $B \in \mathbb{R}$. Question: Is there a labeling of height *B*?

Theorem (Kim, Shin & Yang, '99)

Rectilinear segment labeling is solvable in $O(n^2 \log n)$ time.

20

イロト イポト イヨト イヨ

Is there a strong realization?

Squares - canonical form

Let squares slide

- for vertical kernels leftwards as far as possible.
- for horizontal kernels downwards as far as possible.

When does a square stop sliding?

30

21

3

< 🗇 🕨

Is there a strong realization?

Squares - canonical form

Let squares slide

- for vertical kernels leftwards as far as possible.
- for horizontal kernels downwards as far as possible.

When does a square stop sliding?

30

21

< 合

Is there a strong realization? Application to map labeling NP-completeness

Squares - canonical form

Let squares slide

- for vertical kernels leftwards as far as possible.
- for horizontal kernels downwards as far as possible.

When does a square stop sliding?

Is there a strong realization? Application to map labeling NP-completeness

Squares - canonical form

Let squares slide

- for *vertical* kernels *leftwards* as far as possible.
- for horizontal kernels downwards as far as possible.

When does a square stop sliding?

Is there a strong realization?

Squares - canonical form

Let squares slide

- for vertical kernels leftwards as far as possible.
- for *horizontal* kernels *downwards* as far as possible.

When does a square stop sliding?

Observations

- The resulting positions can be computed in advance.
- Every square has O(n) relevant positions.

30

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Introduction Is there a strong realization? Rectangles Squares

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$ Question: Is there a strong square realization of M?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

30

22

< 🗇 🕨

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$ Question: Is there a strong square realization of *M*?

• Do kernels overlap?

 $O(n \log n)$

- Calculate relevant positions.
- Solve decision problem with 2-SAT.

30

22

・ 同 ト ・ 三 ト ・

Introduction Is there a strong realization? Rectangles Squares

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$ Question: Is there a strong square realization of M?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

Bereg, Mutsanas & Wolff

30

22

< 🗇 🕨

 $O(n \log n)$ $O(n^2)$

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$ Question: Is there a strong square realization of *M*?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

 $O(n \log n)$ $O(n^2)$ $O(k_{\max} \cdot n \log n)$

30

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$ Question: Is there a strong square realization of *M*?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

 $O(n \log n)$ $O(n^2)$ $O(n \cdot n \log n)$

30

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$ Question: Is there a strong square realization of *M*?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

 $O(n \log n)$ $O(n^2)$ $O(n^2 \log n)$

30

Squares - Decision Algorithm

Problem

Given: $P \subseteq \mathbb{R}^2$, matching $M \subseteq \binom{P}{2}$ Question: Is there a strong square realization of *M*?

- Do kernels overlap?
- Calculate relevant positions.
- Solve decision problem with 2-SAT.

```
O(n \log n)O(n^2)O(n^2 \log n)
```

Conclusion

The decision problem can be solved in $O(n^2 \log n)$ time.

30

22

< □ > < 同 > < 三 > <

Introduction Application to map labeling Squares

Labeling points with sliding labels

Bereg, Mutsanas & Wolff

30

23

ъ

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction Application to map labeling Squares

Labeling points with sliding labels

Bereg, Mutsanas & Wolff

30

23

ъ

Introduction Application to map labeling Squares

Labeling points with sliding labels

Bereg, Mutsanas & Wolff

30

23

э

ъ

NP-completeness

ESPSM

Given: Point set $P \subseteq \mathbb{R}^2$ Question: Does a strong perfect square-matching exist?

Theorem (Bereg, Mutsanas & Wolff '05)

ESPSM is NP-hard.

Proof.

By reduction from PLANAR 3-SAT to ESPSM.

24

æ

イロト イポト イヨト イヨト

NP-completeness

ESPSM

Given: Point set $P \subseteq \mathbb{R}^2$ Question: Does a strong perfect square-matching exist?

Theorem (Bereg, Mutsanas & Wolff '05)

ESPSM is NP-hard.

Proof.

By reduction from PLANAR 3-SAT to ESPSM.

24

æ

イロト イポト イヨト イヨト

NP-completeness

ESPSM

Given: Point set $P \subseteq \mathbb{R}^2$ Question: Does a strong perfect square-matching exist?

Theorem (Bereg, Mutsanas & Wolff '05)

ESPSM is NP-hard.

Proof.

By reduction from PLANAR 3-SAT to ESPSM.

24

æ

イロト イポト イヨト イヨ

Outline of the Reduction

Goal: Point set $P \subseteq \mathbb{R}^2$ with

P admits s. p. square-matching $\Leftrightarrow \varphi$ satisfiable.

30

Outline of the Reduction

Outline of the Reduction

Squares	NP-completeness
Rectangles	Application to map labeling
Introduction	Is there a strong realization

Variable Gadget

v = true

30

26

ъ

Squares	NP-completeness
Rectangles	Application to map labeling
Introduction	Is there a strong realization

Variable Gadget

v = false

30

Outline of the Reduction

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

28

э

æ

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

28

э

æ

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

30

28

э

э

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

30

28

э

э

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

Bereg, Mutsanas & Wolff

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

28

э

æ

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

28

э

æ

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

Conclusions

- Upper bound for rectangle-matching
- With rectangles we can match
- Is there a strong square-realization?
- Is there a perfect strong square-matching?

 $2/3 \cdot \#$ points $\geq 4/7 \cdot \#$ points $O(n^2 \log n)$ time NP-hard

Open questions

- Match 2/3 of the points with rectangles? (solved!)
- Approximation algorithms?
- Perfect *weak* square-matching also NP-hard? Rectangle-matching? Circle-matching?

30

< ロ > < 同 > < 三 >

Introduction	Is there a strong realization?
Rectangles	Application to map labeling
Squares	NP-completeness

Conclusions

- Upper bound for rectangle-matching
- With rectangles we can match
- Is there a strong square-realization?
- Is there a perfect strong square-matching?

 $2/3 \cdot \#$ points $\geq 4/7 \cdot \#$ points $O(n^2 \log n)$ time NP-hard

Open questions

- Match 2/3 of the points with rectangles? (solved!)
- Approximation algorithms?
- Perfect weak square-matching also NP-hard? Rectangle-matching? Circle-matching?

Squares	NP-completeness
Rectangles	Application to map labeling
Introduction	Is there a strong realization?

Thank you for your attention!

30

30

< 合