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Implicit Data Representation

Definition

An implicit data representation avoids explicit enumeration of
single elements.

Focus: Representation by Boolean functions.

Consider string I ∈ {0, 1}n of length n = 2m.

Define the characteristic function χI : {0, 1}
m → {0, 1} of I by

χI (x) = I|x |

for x ∈ {0, 1}m.
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Implicit Algorithms and OBDDs

Popular data structure for Boolean functions:
Ordered Binary Decision Diagrams (OBDDs)

OBDDs of structured functions are known to be very succinct.

OBDDs offer efficient algorithms for functional operations.

⇒ Implicit/symbolic algorithms:

Represent input I ∈ {0, 1}n implicitly as OBDD of χI .
Compute OBDD of χO for output O ∈ {0, 1}∗.
Process implicit data via functional OBDD operations.

Hope: Efficient (sublinear) heuristic on large but structured
problem instances
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Ordered Binary Decision Diagrams (OBDDs)

Data structure for f : {0, 1}m → {0, 1}
with Vars. x0, . . . , xm−1 ∈ {0, 1}

OBDD Gf is acyclic digraph having
inner nodes and sinks.

Inner nodes: Variable label, 0- and
1-edge

Sink represents value f (x0, . . . , xm−1).

Source pointer s

Reads vars. w. r. t. π ∈ Σm.
1 0 1 100

(Bryant, 1985)
s

x2 x2

x0

x3 x3

x1

π = (1, 0, 2, 3)
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Algorithmic Properties of OBDDs

Every function f on m vars. has at most OBDD size
O(2m/m).

Hope for structured functions: OBDD size poly(m)

Efficient operations for OBDDs Gf and Gh:

Satisfiability: f 6≡ 0
Equivalence: f = h

Variable replacement: f|xi=0/1

Binary synthesis: f ⊗ h for ⊗ = ∨,∧,⊕, . . .
Quantification: (∃/∀xi )f
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Implicit Graph Algorithms: An Example

Example: An implicit BFS algorithm on χG for

χG (x , y) = 1 ⇔ (v|x |, v|y |) ∈ E

i := 0; R0(x) := (|x | = s)
repeat

N(x) := (∃y)[χG (y , x)∧Ri (y)∧Ri (x)]
Ri+1(x) := Ri (x) ∨ N(x)
i := i + 1

until Ri = Ri−1 Ri

Ri+1
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State of Affairs

Situation until 2002:

OBDDs well established in CAD, Model Checking, . . .
Pure heuristics for mostly application-specific problems
No theoretical analyses of time/space

Recent contributions:

Implicit algorithms for many graph-theoretic problems (Flows,
Shortest Paths, Topological Sorting, . . . )
Polylogarithmic upper bounds for structured instances
Polynomial lower bounds for certain structured instances

This talk:

A lower bound for P-complete problems
Fixed-parameter intractability of basic graph problems
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Polylogarithmic upper bounds for structured instances
Polynomial lower bounds for certain structured instances

This talk:

A lower bound for P-complete problems
Fixed-parameter intractability of basic graph problems
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The Number of Functional Operations

Efficient implicit algos. execute few operations on small data
structures.

Many works just consider the number of operations
(SCCs, Gentilini et al., SODA’03).

General goal: Design algorithms with O(logk n) operations.

New result: Impossible for P-complete problem (unless
P=NC)!
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A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with
additional symbolic regs. S0, S1, . . . each holding a Boolean
function f : {0, 1}m → {0, 1}. It offers ops. to

get/increase m,

evaluate Si due to a ∈ {0, 1}m,

read f from standard registers into Si .

copy/negate symbolic registers,

compute Si ⊗ Sj ,

[. . .]

each of cost 1. Input χI and output χO are located in S0.
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A Framework for Implicit Algorithms

SRAM model captures capabilties of “all” implicit
(OBDD-based) algorithms.

Implicit algorithm with t(n) operations ⇒ SRAM with time
O(t(n)).

Theorem

SRAM on input χI with time t(n) and m ≤ k log n variables can

be simulated by PRAM in parallel time O((t(n))2 · log2 n) with

O(nk) processors on I ∈ {0, 1}n.
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Simulating SRAMs by PRAMs

Theorem

SRAM on input χI with time t(n) and m ≤ k log n variables can

be simulated by PRAM in parallel time O((t(n))2 · log2 n) with

O(nk) processors on I ∈ {0, 1}n.

Sketch of proof:

Handle values S0(a), . . . , Sr (a) by processor Pa for
a ∈ {0, 1}m and r ≤ t(n).

⇒ O(2m) = O(nk) processors.

Simulate each symbolic op. in parallel time O(t(n) · log2 n).

Example ∧: Each Pa computes Si (a) ∧ Sj(a).
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Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time O(logk n) on

O(nk) processors unless P = NC.

Corollary

P-complete problems have no implicit algorithms with O(logk n)
functional operations on ≤ k log n variables unless P = NC.

Example: Flow maximization is P-complete.

Open: Is 0-1 flow maximization P-complete?

⇒ No polylog. implicit algo. yet. (S., SOFSEM’04)
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s-t-Connectivity in OBDD-represented Graphs

Input: χG (x , y) = 1 ⇔ (v|x |, v|y |) ∈ E , s, t ∈ V

Feigenbaum et al. (STACS’98): PSPACE-hard!

Technique: Construct small OBDD for configuration transition
relation of pol. space bounded TM.
For Π ∈ PSPACE , TM MΠ and input I ∈ {0, 1}m: Construct
OBDD χΠ,I of size O(poly(m)).
Ask if start config. is connected to accepting config.

W. r. t. graph size: No O(logk |V |)-algorithm.

Question: Which input OBDD properties might enable
polynomial complexity?
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Definition of OBDD Width

Definition

The OBDD width is the
maximum number of nodes
labeled the same variable.
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OBDD Width as Fixed Parameter

Are there efficient algorithms for inputs with small OBDD
width W ?

For width W of χG and some function α:

Parameterized complexity O(logk |V | · α(W )) possible?

Feigenbaum proof: W = O(1) ⇒ No FPT-algo. for s-t-conn.

New contribution: Fixed-parameter intractability for further
problems on OBDD-represented graphs.

Theorem

None of the problems s-t-conn., APSP, MaxFlow, Acyclicity,

Connectivity, Bipartiteness, Eulerian-Cycle, and Planarity on

OBDD-represented graphs has an FPT-algo. unless P=PSPACE.
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Daniel Sawitzki The Complexity of Problems on Implicitly Represented Inputs



Introduction
P-Complete Problems

Fixed-Parameter Intractability
Summary

OBDD Width as Fixed Parameter
Width-Preserving Reductions

OBDD Width as Fixed Parameter

Are there efficient algorithms for inputs with small OBDD
width W ?

For width W of χG and some function α:
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Width-Preserving Reductions from Π to Π
′

Map φ is width-preserving reduction from Π to Π′ iff

it maps OBDD χG to OBDD χG ′ with

G ∈ Π ⇔ G ′ ∈ Π′,

width W ′ of χG ′ depends only on W rather than on |V |.

Theorem

A sequence of O(1) arbitrary OBDD operations is width-preserving.
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Fixed-Parameter Intractability of Bipartiteness

Exemplarily reduction from undir. s-t-conn. to bipart.:

4

a b

1 2 3

c

4

a b

1 2 3

c

s

t

1

3

2

4

a

c

b w

Copy 2Copy 1G G’

s st t

Reduction has constant length expression ⇒ width-preserving

Constant width of χG implies constant width of χG ′ .

FPT algo. for bipart. would yield pol. algo. for s-t-conn.
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Fixed-Parameter Intractability of Bipartiteness

Exemplarily reduction from undir. s-t-conn. to bipart.:

χG ′ (x , y) :=
ˆ

(T (x) = v)∧(T (y) = e)∧(i(x) = i(y))∧(c(x) = c(y))∧χG (i(y), j(y))
˜

∨
ˆ

(T (x) = e) ∧ (T (y) = v) ∧ (j(x) = j(y)) ∧ (c(x) = c(y)) ∧ χG (i(x), j(x))
˜

∨
ˆ

(T (x) = T (y) = v) ∧ (v|i(x)| = v|i(y)| = s) ∧ (c(x) 6= c(y))
˜

∨
ˆ

(T (x) = v) ∧ (T (y) = w) ∧ (v|i(x)| = t)
˜

,

Reduction has constant length expression ⇒ width-preserving

Constant width of χG implies constant width of χG ′ .

FPT algo. for bipart. would yield pol. algo. for s-t-conn.
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Summary

If P 6= NC and P 6= PSPACE :

P-complete problems cannot be solved by O(logk n)
functional operations.

Fundamental graph problems have no OBDD-based FPT
algorithms w. r. t. fixed input OBDD width.

Even constant input OBDD width does not suffice for
polynomial time w. r. t. m = Θ(log n).

Technique works for many constant depth reductions and
read-once projections.

⇒ Practical success of OBDDs has to be explained by further
instance properties.
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“That’s all Folks!”
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