The Complexity of Problems on Implicitly Represented Inputs

Daniel Sawitzki

University of Dortmund, Computer Science 2

SOFSEM 2006, Merin

1 Introduction

- 2 P-Complete Problems
- **3** Fixed-Parameter Intractability

4 Summary

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

Implicit Data Representation

Definition

An implicit data representation avoids explicit enumeration of single elements.

Focus: Representation by Boolean functions.

• Consider string $I \in \{0, 1\}^n$ of length $n = 2^m$.

Define the characteristic function $\chi_I \colon \{0,1\}^m \to \{0,1\}$ of I by

$$\chi_I(x) = I_{|x|}$$

for $x \in \{0, 1\}^m$.

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

Implicit Data Representation

Definition

An implicit data representation avoids explicit enumeration of single elements.

- Focus: Representation by Boolean functions.
- Consider string $I \in \{0,1\}^n$ of length $n = 2^m$.
- Define the characteristic function $\chi_I \colon \{0,1\}^m \to \{0,1\}$ of I by

$$\chi_I(x) = I_{|x|}$$

for $x \in \{0, 1\}^m$.

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

Implicit Data Representation

Definition

An implicit data representation avoids explicit enumeration of single elements.

- Focus: Representation by Boolean functions.
- Consider string $I \in \{0,1\}^n$ of length $n = 2^m$.
- Define the characteristic function $\chi_I \colon \{0,1\}^m \to \{0,1\}$ of I by

$$\chi_I(x) = I_{|x|}$$

for $x \in \{0, 1\}^m$.

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)
- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.
- $\blacksquare \Rightarrow$ Implicit/symbolic algorithms:
 - **Represent input** $I \in \{0,1\}^n$ implicitly as OBDD of χ_I .
 - Compute OBDD of χ_O for output $O \in \{0,1\}^*$
 - Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)
- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.
- $\blacksquare \Rightarrow$ Implicit/symbolic algorithms:
 - **Represent input** $l \in \{0,1\}^n$ implicitly as OBDD of χ_l .
 - Compute OBDD of χ_O for output $O \in \{0, 1\}^*$
 - Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)
- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.
- $\blacksquare \Rightarrow$ Implicit/symbolic algorithms:
 - Represent input $I \in \{0, 1\}^n$ implicitly as OBDD of χ_I
 - Compute OBDD of χ_O for output $O \in \{0,1\}^*$.
 - Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)
- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.
- $\blacksquare \Rightarrow$ Implicit/symbolic algorithms:
 - Represent input $I \in \{0,1\}^n$ implicitly as OBDD of χ_I .
 - Compute OBDD of χ_O for output $O \in \{0, 1\}^*$.
 - Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)
- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.
- $\blacksquare \Rightarrow$ Implicit/symbolic algorithms:
 - Represent input $I \in \{0,1\}^n$ implicitly as OBDD of χ_I .
 - Compute OBDD of χ_O for output $O \in \{0, 1\}^*$.
 - Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)
- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.
- $\blacksquare \Rightarrow$ Implicit/symbolic algorithms:
 - Represent input $I \in \{0, 1\}^n$ implicitly as OBDD of χ_I .
 - Compute OBDD of χ_O for output $O \in \{0,1\}^*$.
 - Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)
- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.
- $\blacksquare \Rightarrow$ Implicit/symbolic algorithms:
 - Represent input $I \in \{0,1\}^n$ implicitly as OBDD of χ_I .
 - Compute OBDD of χ_O for output $O \in \{0, 1\}^*$.
 - Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)
- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.
- $\blacksquare \Rightarrow$ Implicit/symbolic algorithms:
 - Represent input $I \in \{0,1\}^n$ implicitly as OBDD of χ_I .
 - Compute OBDD of χ_O for output $O \in \{0, 1\}^*$.
 - Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Data structure for $f: \{0,1\}^m \rightarrow \{0,1\}$ with Vars. $x_0, \ldots, x_{m-1} \in \{0,1\}$
- OBDD G_f is acyclic digraph having inner nodes and sinks.
- Inner nodes: Variable label, 0- and 1-edge
- Sink represents value $f(x_0, \ldots, x_{m-1})$.
- Source pointer s
- Reads vars. w. r. t. $\pi \in \Sigma_m$.

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Data structure for $f: \{0,1\}^m \rightarrow \{0,1\}$ with Vars. $x_0, \ldots, x_{m-1} \in \{0,1\}$
- OBDD G_f is acyclic digraph having inner nodes and sinks.
- Inner nodes: Variable label, 0- and 1-edge
- Sink represents value $f(x_0, \ldots, x_{m-1})$.
- Source pointer s
- Reads vars. w. r. t. $\pi \in \Sigma_m$.

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Data structure for $f: \{0,1\}^m \rightarrow \{0,1\}$ with Vars. $x_0, \ldots, x_{m-1} \in \{0,1\}$
- OBDD G_f is acyclic digraph having inner nodes and sinks.
- Inner nodes: Variable label, 0- and 1-edge
- Sink represents value $f(x_0, \ldots, x_{m-1})$.
- Source pointer s
- Reads vars. w. r. t. $\pi \in \Sigma_m$.

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Data structure for $f: \{0,1\}^m \rightarrow \{0,1\}$ with Vars. $x_0, \ldots, x_{m-1} \in \{0,1\}$
- OBDD G_f is acyclic digraph having inner nodes and sinks.
- Inner nodes: Variable label, 0- and 1-edge
- Sink represents value $f(x_0, \ldots, x_{m-1})$.
- Source pointer s
- Reads vars. w. r. t. $\pi \in \Sigma_m$

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Data structure for $f: \{0,1\}^m \rightarrow \{0,1\}$ with Vars. $x_0, \ldots, x_{m-1} \in \{0,1\}$
- OBDD G_f is acyclic digraph having inner nodes and sinks.
- Inner nodes: Variable label, 0- and 1-edge
- Sink represents value $f(x_0, \ldots, x_{m-1})$.
- Source pointer s
- Reads vars. w.r.t. $\pi \in \Sigma_m$.

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Data structure for $f: \{0,1\}^m \rightarrow \{0,1\}$ with Vars. $x_0, \ldots, x_{m-1} \in \{0,1\}$
- OBDD G_f is acyclic digraph having inner nodes and sinks.
- Inner nodes: Variable label, 0- and 1-edge
- Sink represents value $f(x_0, \ldots, x_{m-1})$.
- Source pointer s
- Reads vars. w. r. t. $\pi \in \Sigma_m$.

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Every function f on m vars. has at most OBDD size $\mathcal{O}(2^m/m)$.
- Hope for structured functions: OBDD size poly(m)
- Efficient operations for OBDDs G_f and G_h:
 - Satisfiability: $f \neq 0$
 - Equivalence: f = b
 - Variable replacement: $f_{|x_i=0/1|}$
 - Binary synthesis: $f \otimes h$ for $\otimes = \lor, \land, \oplus, \ldots$
 - **Quantification**: $(\exists / \forall x_i) f$

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Every function f on m vars. has at most OBDD size $\mathcal{O}(2^m/m)$.
- Hope for structured functions: OBDD size poly(m)
- Efficient operations for OBDDs \mathcal{G}_f and \mathcal{G}_h :
 - Satisfiability: $f \neq 0$
 - Equivalence: f = 1
 - Variable replacement: $f_{|x_i=0/1|}$
 - Binary synthesis: $f \otimes h$ for $\otimes = \lor, \land, \oplus, \ldots$
 - **Quantification**: $(\exists / \forall x_i) f$

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Every function f on m vars. has at most OBDD size $\mathcal{O}(2^m/m)$.
- Hope for structured functions: OBDD size poly(m)
- Efficient operations for OBDDs G_f and G_h:
 - **Satisfiability**: $f \neq 0$
 - Equivalence: f = h
 - Variable replacement: $f_{|x_i=0/1|}$
 - Binary synthesis: $f \otimes h$ for $\otimes = \lor, \land, \oplus, \ldots$
 - **Quantification**: $(\exists / \forall x_i) f$

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Every function f on m vars. has at most OBDD size $\mathcal{O}(2^m/m)$.
- Hope for structured functions: OBDD size poly(m)
- Efficient operations for OBDDs \mathcal{G}_f and \mathcal{G}_h :
 - **Satisfiability**: $f \not\equiv 0$
 - Equivalence: f = h
 - Variable replacement: $f_{|x_i=0/1}$
 - Binary synthesis: $f \otimes h$ for $\otimes = \lor, \land, \oplus, \ldots$
 - **Quantification**: $(\exists / \forall x_i) f$

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Every function f on m vars. has at most OBDD size $\mathcal{O}(2^m/m)$.
- Hope for structured functions: OBDD size poly(m)
- Efficient operations for OBDDs \mathcal{G}_f and \mathcal{G}_h :
 - **Satisfiability**: $f \not\equiv 0$
 - **Equivalence**: f = h
 - Variable replacement: $f_{|x_i=0/1|}$
 - Binary synthesis: $f \otimes h$ for $\otimes = \lor, \land, \oplus, \ldots$
 - **Quantification**: $(\exists / \forall x_i) f$

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Every function f on m vars. has at most OBDD size $\mathcal{O}(2^m/m)$.
- Hope for structured functions: OBDD size poly(m)
- Efficient operations for OBDDs \mathcal{G}_f and \mathcal{G}_h :
 - **Satisfiability**: $f \not\equiv 0$
 - **Equivalence**: f = h
 - Variable replacement: $f_{|x_i=0/1}$
 - Binary synthesis: $f \otimes h$ for $\otimes = \lor, \land, \oplus, \ldots$
 - **Quantification**: $(\exists / \forall x_i) f$

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

Algorithmic Properties of OBDDs

- Every function f on m vars. has at most OBDD size $\mathcal{O}(2^m/m)$.
- Hope for structured functions: OBDD size poly(m)
- Efficient operations for OBDDs \mathcal{G}_f and \mathcal{G}_h :
 - **Satisfiability**: $f \not\equiv 0$
 - **Equivalence**: f = h
 - Variable replacement: $f_{|x_i=0/1}$
 - Binary synthesis: $f \otimes h$ for $\otimes = \lor, \land, \oplus, \ldots$

Quantification: $(\exists / \forall x_i) f$

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

- Every function f on m vars. has at most OBDD size $\mathcal{O}(2^m/m)$.
- Hope for structured functions: OBDD size poly(m)
- Efficient operations for OBDDs \mathcal{G}_f and \mathcal{G}_h :
 - **Satisfiability**: $f \not\equiv 0$
 - **Equivalence**: f = h
 - Variable replacement: $f_{|x_i=0/1}$
 - Binary synthesis: $f \otimes h$ for $\otimes = \lor, \land, \oplus, \ldots$
 - **Quantification**: $(\exists / \forall x_i) f$

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

Implicit Graph Algorithms: An Example

Example: An implicit BFS algorithm on $\chi_{\textit{G}}$ for

$$\chi_G(x,y) = 1 \Leftrightarrow (v_{|x|},v_{|y|}) \in E$$

$$i := 0; R_0(x) := (|x| = s)$$

repeat
$$N(x) := (\exists y) [\chi_G(y, x) \land R_i(y) \land \overline{R_i(x)}]$$

$$R_{i \land i}(x) := R_i(x) \lor N(x)$$

$$K_{i+1}(x) := K_i(x) \lor K(x)$$

 $i := i + 1$
until $R_i = R_{i-1}$

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

Recent contributions:

- Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
- Polylogarithmic upper bounds for structured instances
- Polynomial lower bounds for certain structured instances

- A lower bound for P-complete problems
- Fixed-parameter intractability of basic graph problems

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

Recent contributions:

- Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
- Polylogarithmic upper bounds for structured instances
- Polynomial lower bounds for certain structured instances

- A lower bound for P-complete problems
- Fixed-parameter intractability of basic graph problems

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

Recent contributions:

- Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
- Polylogarithmic upper bounds for structured instances
- Polynomial lower bounds for certain structured instances

- A lower bound for P-complete problems
- Fixed-parameter intractability of basic graph problems

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space
- Recent contributions:
 - Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
 - Polylogarithmic upper bounds for structured instances
 - Polynomial lower bounds for certain structured instances
- This talk:
 - A lower bound for P-complete problems
 - Fixed-parameter intractability of basic graph problems

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

Recent contributions:

- Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
- Polylogarithmic upper bounds for structured instances
- Polynomial lower bounds for certain structured instances

- A lower bound for P-complete problems
- Fixed-parameter intractability of basic graph problems

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space
- Recent contributions:
 - Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
 - Polylogarithmic upper bounds for structured instances
 - Polynomial lower bounds for certain structured instances
- This talk:
 - A lower bound for P-complete problems
 - Fixed-parameter intractability of basic graph problems

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space
- Recent contributions:
 - Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
 - Polylogarithmic upper bounds for structured instances
 - Polynomial lower bounds for certain structured instances
- This talk:
 - A lower bound for P-complete problems
 - Fixed-parameter intractability of basic graph problems

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space
- Recent contributions:
 - Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
 - Polylogarithmic upper bounds for structured instances
 - Polynomial lower bounds for certain structured instances

- A lower bound for P-complete problems
- Fixed-parameter intractability of basic graph problems
Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space
- Recent contributions:
 - Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
 - Polylogarithmic upper bounds for structured instances
 - Polynomial lower bounds for certain structured instances

This talk:

- A lower bound for P-complete problems
- Fixed-parameter intractability of basic graph problems

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space
- Recent contributions:
 - Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
 - Polylogarithmic upper bounds for structured instances
 - Polynomial lower bounds for certain structured instances
- This talk:
 - A lower bound for P-complete problems
 - Fixed-parameter intractability of basic graph problems

Implicit Data Representation Implicit Algorithms and OBDDs Ordered Binary Decision Diagrams Algorithmic Properties of OBDDs State of Affairs

State of Affairs

Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space
- Recent contributions:
 - Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
 - Polylogarithmic upper bounds for structured instances
 - Polynomial lower bounds for certain structured instances
- This talk:
 - A lower bound for P-complete problems
 - Fixed-parameter intractability of basic graph problems

2 P-Complete Problems

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

- Efficient implicit algos. execute few operations on small data structures.
- Many works just consider the number of operations (SCCs, Gentilini et al., SODA'03).
- General goal: Design algorithms with $\mathcal{O}(\log^k n)$ operations.
- New result: Impossible for P-complete problem (unless P=NC)!

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

- Efficient implicit algos. execute few operations on small data structures.
- Many works just consider the number of operations (SCCs, Gentilini et al., SODA'03).
- General goal: Design algorithms with $\mathcal{O}(\log^k n)$ operations.
- New result: Impossible for P-complete problem (unless P=NC)!

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

- Efficient implicit algos. execute few operations on small data structures.
- Many works just consider the number of operations (SCCs, Gentilini et al., SODA'03).
- General goal: Design algorithms with $\mathcal{O}(\log^k n)$ operations.
- New result: Impossible for P-complete problem (unless P=NC)!

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

- Efficient implicit algos. execute few operations on small data structures.
- Many works just consider the number of operations (SCCs, Gentilini et al., SODA'03).
- General goal: Design algorithms with $\mathcal{O}(\log^k n)$ operations.
- New result: Impossible for P-complete problem (unless P=NC)!

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_0, S_1, \ldots each holding a Boolean function $f: \{0, 1\}^m \rightarrow \{0, 1\}$. It offers ops. to

- get/increase m,
- evaluate S_i due to $a \in \{0, 1\}^m$,
- read f from standard registers into S_i .
- copy/negate symbolic registers,
- compute $S_i \otimes S_j$,
- [...]

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_0, S_1, \ldots each holding a Boolean function $f: \{0, 1\}^m \rightarrow \{0, 1\}$. It offers ops. to

- get/increase m,
- evaluate S_i due to $a \in \{0,1\}^m$,
- read f from standard registers into S_i .
- copy/negate symbolic registers,
- compute $S_i \otimes S_j$,
- [...]

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_0, S_1, \ldots each holding a Boolean function $f: \{0, 1\}^m \rightarrow \{0, 1\}$. It offers ops. to

- get/increase *m*,
- evaluate S_i due to $a \in \{0, 1\}^m$,
- read f from standard registers into S_i .
- copy/negate symbolic registers,
- compute $S_i \otimes S_j$,
- **[**...]

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_0, S_1, \ldots each holding a Boolean function $f: \{0, 1\}^m \rightarrow \{0, 1\}$. It offers ops. to

- get/increase *m*,
- evaluate S_i due to $a \in \{0, 1\}^m$,
- read f from standard registers into S_i .
- copy/negate symbolic registers,
- compute $S_i \otimes S_j$,
- **[**...]

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_0, S_1, \ldots each holding a Boolean function $f: \{0, 1\}^m \rightarrow \{0, 1\}$. It offers ops. to

- get/increase *m*,
- evaluate S_i due to $a \in \{0, 1\}^m$,
- read f from standard registers into S_i .
- copy/negate symbolic registers,
- compute $S_i \otimes S_j$,

• [...]

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_0, S_1, \ldots each holding a Boolean function $f: \{0, 1\}^m \to \{0, 1\}$. It offers ops. to

- get/increase m,
- evaluate S_i due to $a \in \{0,1\}^m$,
- read f from standard registers into S_i .
- copy/negate symbolic registers,
- compute $S_i \otimes S_j$,
- **[**...]

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_0, S_1, \ldots each holding a Boolean function $f: \{0, 1\}^m \rightarrow \{0, 1\}$. It offers ops. to

- get/increase m,
- evaluate S_i due to $a \in \{0, 1\}^m$,
- read f from standard registers into S_i .
- copy/negate symbolic registers,
- compute $S_i \otimes S_j$,
- [. . .]

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

A Framework for Implicit Algorithms

SRAM model captures capabilities of "all" implicit (OBDD-based) algorithms.

Implicit algorithm with t(n) operations \Rightarrow SRAM with time $\mathcal{O}(t(n))$.

Theorem

SRAM on input χ_I with time t(n) and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}((t(n))^2 \cdot \log^2 n)$ with $\mathcal{O}(n^k)$ processors on $I \in \{0, 1\}^n$.

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

A Framework for Implicit Algorithms

- SRAM model captures capabilities of "all" implicit (OBDD-based) algorithms.
- Implicit algorithm with t(n) operations \Rightarrow SRAM with time $\mathcal{O}(t(n))$.

Theorem

SRAM on input χ_I with time t(n) and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}((t(n))^2 \cdot \log^2 n)$ with $\mathcal{O}(n^k)$ processors on $I \in \{0, 1\}^n$.

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

A Framework for Implicit Algorithms

- SRAM model captures capabilities of "all" implicit (OBDD-based) algorithms.
- Implicit algorithm with t(n) operations \Rightarrow SRAM with time $\mathcal{O}(t(n))$.

Theorem

SRAM on input χ_I with time t(n) and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}((t(n))^2 \cdot \log^2 n)$ with $\mathcal{O}(n^k)$ processors on $I \in \{0, 1\}^n$.

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

Simulating SRAMs by PRAMs

Theorem

SRAM on input χ_I with time t(n) and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}((t(n))^2 \cdot \log^2 n)$ with $\mathcal{O}(n^k)$ processors on $I \in \{0, 1\}^n$.

Sketch of proof:

■ Handle values $S_0(a), \ldots, S_r(a)$ by processor P_a for $a \in \{0, 1\}^m$ and $r \le t(n)$.

 $\blacksquare \Rightarrow \mathcal{O}(2^m) = \mathcal{O}(n^k) \text{ processors.}$

Simulate each symbolic op. in parallel time $\mathcal{O}(t(n) \cdot \log^2 n)$.

• Example \wedge : Each P_a computes $S_i(a) \wedge S_j(a)$.

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

Simulating SRAMs by PRAMs

Theorem

SRAM on input χ_I with time t(n) and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}((t(n))^2 \cdot \log^2 n)$ with $\mathcal{O}(n^k)$ processors on $I \in \{0, 1\}^n$.

Sketch of proof:

- Handle values $S_0(a), \ldots, S_r(a)$ by processor P_a for $a \in \{0, 1\}^m$ and $r \le t(n)$.
- $\Rightarrow \mathcal{O}(2^m) = \mathcal{O}(n^k)$ processors.
- Simulate each symbolic op. in parallel time $\mathcal{O}(t(n) \cdot \log^2 n)$.
- Example \wedge : Each P_a computes $S_i(a) \wedge S_i(a)$.

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

Simulating SRAMs by PRAMs

Theorem

SRAM on input χ_I with time t(n) and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}((t(n))^2 \cdot \log^2 n)$ with $\mathcal{O}(n^k)$ processors on $I \in \{0, 1\}^n$.

Sketch of proof:

- Handle values $S_0(a), \ldots, S_r(a)$ by processor P_a for $a \in \{0, 1\}^m$ and $r \le t(n)$.
- $\Rightarrow \mathcal{O}(2^m) = \mathcal{O}(n^k)$ processors.
- Simulate each symbolic op. in parallel time $\mathcal{O}(t(n) \cdot \log^2 n)$.
- Example \wedge : Each P_a computes $S_i(a) \wedge S_i(a)$.

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

Simulating SRAMs by PRAMs

Theorem

SRAM on input χ_I with time t(n) and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}((t(n))^2 \cdot \log^2 n)$ with $\mathcal{O}(n^k)$ processors on $I \in \{0, 1\}^n$.

Sketch of proof:

- Handle values $S_0(a), \ldots, S_r(a)$ by processor P_a for $a \in \{0, 1\}^m$ and $r \le t(n)$.
- $\Rightarrow \mathcal{O}(2^m) = \mathcal{O}(n^k)$ processors.
- Simulate each symbolic op. in parallel time $\mathcal{O}(t(n) \cdot \log^2 n)$.
- Example \wedge : Each P_a computes $S_i(a) \wedge S_j(a)$.

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time $O(\log^k n)$ on $O(n^k)$ processors unless P = NC.

Corollary

P-complete problems have no implicit algorithms with $O(\log^k n)$ functional operations on $\leq k \log n$ variables unless P = NC.

- Example: Flow maximization is P-complete.
- Open: Is 0-1 flow maximization P-complete?
- \Rightarrow No polylog. implicit algo. yet. (S., SOFSEM'04)

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time $O(\log^k n)$ on $O(n^k)$ processors unless P = NC.

Corollary

P-complete problems have no implicit algorithms with $O(\log^k n)$ functional operations on $\leq k \log n$ variables unless P = NC.

- Example: Flow maximization is P-complete.
- Open: Is 0-1 flow maximization P-complete?
- \blacksquare \Rightarrow No polylog. implicit algo. yet. (S., SOFSEM'04)

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time $O(\log^k n)$ on $O(n^k)$ processors unless P = NC.

Corollary

P-complete problems have no implicit algorithms with $O(\log^k n)$ functional operations on $\leq k \log n$ variables unless P = NC.

Example: Flow maximization is P-complete.

• Open: Is 0-1 flow maximization P-complete?

■ \Rightarrow No polylog. implicit algo. yet. (S., SOFSEM'04)

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time $O(\log^k n)$ on $O(n^k)$ processors unless P = NC.

Corollary

P-complete problems have no implicit algorithms with $O(\log^k n)$ functional operations on $\leq k \log n$ variables unless P = NC.

- Example: Flow maximization is P-complete.
- Open: Is 0-1 flow maximization P-complete?
- \Rightarrow No polylog. implicit algo. yet. (S., SOFSEM'04)

The Number of Functional Operations A Framework for Implicit Algorithms Simulating SRAMs by PRAMs Result for P-complete Problems

Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time $O(\log^k n)$ on $O(n^k)$ processors unless P = NC.

Corollary

P-complete problems have no implicit algorithms with $O(\log^k n)$ functional operations on $\leq k \log n$ variables unless P = NC.

- Example: Flow maximization is P-complete.
- Open: Is 0-1 flow maximization P-complete?
- \Rightarrow No polylog. implicit algo. yet. (S., SOFSEM'04)

OBDD Width as Fixed Parameter Width-Preserving Reductions

2 P-Complete Problems

3 Fixed-Parameter Intractability

OBDD Width as Fixed Parameter Width-Preserving Reductions

s-t-Connectivity in OBDD-represented Graphs

Input: $\chi_G(x,y) = 1 \Leftrightarrow (v_{|x|}, v_{|y|}) \in E, s, t \in V$

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
- For Π ∈ PSPACE, TM M_Π and input I ∈ {0,1}^m: Construct OBDD χ_{Π,I} of size O(poly(m)).
- Ask if start config. is connected to accepting config.
- W.r.t. graph size: No $\mathcal{O}(\log^k |V|)$ -algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

OBDD Width as Fixed Parameter Width-Preserving Reductions

s-t-Connectivity in OBDD-represented Graphs

Input:
$$\chi_G(x,y) = 1 \Leftrightarrow (v_{|x|},v_{|y|}) \in E, s,t \in V$$

- Feigenbaum et al. (STACS'98): PSPACE-hard!
 - Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
 - For $\Pi \in PSPACE$, TM M_{Π} and input $I \in \{0,1\}^m$: Construct OBDD $\chi_{\Pi,I}$ of size $\mathcal{O}(\text{poly}(m))$.
 - Ask if start config. is connected to accepting config.
- W.r.t. graph size: No $\mathcal{O}(\log^k |V|)$ -algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

OBDD Width as Fixed Parameter Width-Preserving Reductions

s-t-Connectivity in OBDD-represented Graphs

Input:
$$\chi_G(x,y) = 1 \Leftrightarrow (v_{|x|},v_{|y|}) \in E, s,t \in V$$

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
- For $\Pi \in PSPACE$, TM M_{Π} and input $I \in \{0,1\}^m$: Construct OBDD $\chi_{\Pi,I}$ of size $\mathcal{O}(\text{poly}(m))$.
- Ask if start config. is connected to accepting config.
- W.r.t. graph size: No $\mathcal{O}(\log^k |V|)$ -algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

OBDD Width as Fixed Parameter Width-Preserving Reductions

s-t-Connectivity in OBDD-represented Graphs

Input:
$$\chi_G(x,y) = 1 \Leftrightarrow (v_{|x|},v_{|y|}) \in E, s,t \in V$$

■ Feigenbaum et al. (STACS'98): PSPACE-hard!

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
- For $\Pi \in PSPACE$, TM M_{Π} and input $I \in \{0,1\}^m$: Construct OBDD $\chi_{\Pi,I}$ of size $\mathcal{O}(\text{poly}(m))$.

Ask if start config. is connected to accepting config.

- W.r.t. graph size: No $\mathcal{O}(\log^k |V|)$ -algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

OBDD Width as Fixed Parameter Width-Preserving Reductions

s-t-Connectivity in OBDD-represented Graphs

Input:
$$\chi_G(x,y) = 1 \Leftrightarrow (v_{|x|},v_{|y|}) \in E, s,t \in V$$

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
- For $\Pi \in PSPACE$, TM M_{Π} and input $I \in \{0,1\}^m$: Construct OBDD $\chi_{\Pi,I}$ of size $\mathcal{O}(\operatorname{poly}(m))$.
- Ask if start config. is connected to accepting config.
- W.r.t. graph size: No $\mathcal{O}(\log^k |V|)$ -algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

OBDD Width as Fixed Parameter Width-Preserving Reductions

s-t-Connectivity in OBDD-represented Graphs

Input:
$$\chi_G(x,y) = 1 \Leftrightarrow (v_{|x|},v_{|y|}) \in E, s,t \in V$$

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
- For $\Pi \in PSPACE$, TM M_{Π} and input $I \in \{0,1\}^m$: Construct OBDD $\chi_{\Pi,I}$ of size $\mathcal{O}(\operatorname{poly}(m))$.
- Ask if start config. is connected to accepting config.
- W. r. t. graph size: No $\mathcal{O}(\log^k |V|)$ -algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

OBDD Width as Fixed Parameter Width-Preserving Reductions

s-t-Connectivity in OBDD-represented Graphs

Input:
$$\chi_{G}(x,y) = 1 \Leftrightarrow (v_{|x|},v_{|y|}) \in E, s,t \in V$$

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
- For $\Pi \in PSPACE$, TM M_{Π} and input $I \in \{0,1\}^m$: Construct OBDD $\chi_{\Pi,I}$ of size $\mathcal{O}(\operatorname{poly}(m))$.
- Ask if start config. is connected to accepting config.
- W. r. t. graph size: No $\mathcal{O}(\log^k |V|)$ -algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

OBDD Width as Fixed Parameter Width-Preserving Reductions

Definition of OBDD Width

Definition

The OBDD width is the maximum number of nodes labeled the same variable.

OBDD Width as Fixed Parameter Width-Preserving Reductions

OBDD Width as Fixed Parameter

- Are there efficient algorithms for inputs with small OBDD width W?
- For width W of χ_G and some function α :
- Parameterized complexity $\mathcal{O}(\log^k |V| \cdot \alpha(W))$ possible?
- Feigenbaum proof: $W = O(1) \Rightarrow$ No FPT-algo. for *s-t*-conn.
- New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs.

Theorem

OBDD Width as Fixed Parameter Width-Preserving Reductions

OBDD Width as Fixed Parameter

- Are there efficient algorithms for inputs with small OBDD width W?
- For width W of χ_{G} and some function α :
- Parameterized complexity $\mathcal{O}(\log^k |V| \cdot \alpha(W))$ possible?
- Feigenbaum proof: $W = O(1) \Rightarrow$ No FPT-algo. for *s-t*-conn.
- New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs.

Theorem

OBDD Width as Fixed Parameter Width-Preserving Reductions

OBDD Width as Fixed Parameter

- Are there efficient algorithms for inputs with small OBDD width W?
- For width W of χ_{G} and some function α :
- Parameterized complexity $\mathcal{O}(\log^k |V| \cdot \alpha(W))$ possible?
- Feigenbaum proof: $W = O(1) \Rightarrow$ No FPT-algo. for *s*-*t*-conn.
- New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs.

Theorem

OBDD Width as Fixed Parameter Width-Preserving Reductions

OBDD Width as Fixed Parameter

- Are there efficient algorithms for inputs with small OBDD width W?
- For width W of χ_{G} and some function α :
- Parameterized complexity $\mathcal{O}(\log^k |V| \cdot \alpha(W))$ possible?
- Feigenbaum proof: $W = O(1) \Rightarrow$ No FPT-algo. for *s*-*t*-conn.
- New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs.

Theorem

OBDD Width as Fixed Parameter Width-Preserving Reductions

OBDD Width as Fixed Parameter

- Are there efficient algorithms for inputs with small OBDD width W?
- For width W of χ_{G} and some function α :
- Parameterized complexity $\mathcal{O}(\log^k |V| \cdot \alpha(W))$ possible?
- Feigenbaum proof: $W = O(1) \Rightarrow No FPT-algo.$ for *s-t*-conn.
- New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs.

Theorem

OBDD Width as Fixed Parameter Width-Preserving Reductions

OBDD Width as Fixed Parameter

- Are there efficient algorithms for inputs with small OBDD width W?
- For width W of χ_{G} and some function α :
- Parameterized complexity $\mathcal{O}(\log^k |V| \cdot \alpha(W))$ possible?
- Feigenbaum proof: $W = O(1) \Rightarrow No FPT-algo.$ for *s-t*-conn.
- New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs.

Theorem

OBDD Width as Fixed Parameter Width-Preserving Reductions

Width-Preserving Reductions from Π to Π'

Map ϕ is width-preserving reduction from Π to Π' iff

• it maps OBDD χ_G to OBDD $\chi_{G'}$ with

 $G\in\Pi\Leftrightarrow G'\in\Pi',$

• width W' of $\chi_{G'}$ depends only on W rather than on |V|.

Theorem

OBDD Width as Fixed Parameter Width-Preserving Reductions

Width-Preserving Reductions from Π to Π'

Map ϕ is width-preserving reduction from Π to Π' iff it maps OBDD χ_G to OBDD $\chi_{G'}$ with

 $G\in\Pi\Leftrightarrow G'\in\Pi',$

• width W' of $\chi_{G'}$ depends only on W rather than on |V|.

Theorem

OBDD Width as Fixed Parameter Width-Preserving Reductions

Width-Preserving Reductions from Π to Π'

Map ϕ is width-preserving reduction from Π to Π' iff

 \blacksquare it maps OBDD $\chi_{\mathcal{G}}$ to OBDD $\chi_{\mathcal{G}'}$ with

 $G\in\Pi\Leftrightarrow G'\in\Pi',$

• width W' of $\chi_{G'}$ depends only on W rather than on |V|.

Theorem

OBDD Width as Fixed Parameter Width-Preserving Reductions

Width-Preserving Reductions from Π to Π'

Map ϕ is width-preserving reduction from Π to Π' iff

• it maps OBDD χ_{G} to OBDD $\chi_{G'}$ with

 $G\in\Pi\Leftrightarrow G'\in\Pi',$

• width W' of $\chi_{G'}$ depends only on W rather than on |V|.

Theorem

OBDD Width as Fixed Parameter Width-Preserving Reductions

Fixed-Parameter Intractability of Bipartiteness

Exemplarily reduction from undir. *s*-*t*-conn. to bipart.:

■ Reduction has constant length expression ⇒ width-preserving
■ Constant width of χ_G implies constant width of χ_{G'}.
■ EPT algo, for bipart, would yield pol, algo, for s-t-conn

OBDD Width as Fixed Parameter Width-Preserving Reductions

Fixed-Parameter Intractability of Bipartiteness

Exemplarily reduction from undir. *s*-*t*-conn. to bipart.:

$$\begin{split} \chi_{G'}(x,y) &:= \left[(T(x) = v) \land (T(y) = e) \land (i(x) = i(y)) \land (c(x) = c(y)) \land \chi_{G}(i(y), j(y)) \right] \\ &\vee \left[(T(x) = e) \land (T(y) = v) \land (j(x) = j(y)) \land (c(x) = c(y)) \land \chi_{G}(i(x), j(x)) \right] \\ &\vee \left[(T(x) = T(y) = v) \land (v_{|i(x)|} = v_{|i(y)|} = s) \land (c(x) \neq c(y)) \right] \\ &\vee \left[(T(x) = v) \land (T(y) = w) \land (v_{|i(x)|} = t) \right] , \end{split}$$

Reduction has constant length expression ⇒ width-preserving
Constant width of χ_G implies constant width of χ_{G'}.
FPT algo. for bipart. would yield pol. algo. for s-t-conn.

OBDD Width as Fixed Parameter Width-Preserving Reductions

Fixed-Parameter Intractability of Bipartiteness

Exemplarily reduction from undir. *s*-*t*-conn. to bipart.:

Reduction has constant length expression ⇒ width-preserving
Constant width of χ_G implies constant width of $\chi_{G'}$.

FPT algo. for bipart. would yield pol. algo. for *s*-*t*-conn.

OBDD Width as Fixed Parameter Width-Preserving Reductions

Fixed-Parameter Intractability of Bipartiteness

Exemplarily reduction from undir. *s*-*t*-conn. to bipart.:

- Reduction has constant length expression ⇒ width-preserving
- Constant width of χ_{G} implies constant width of $\chi_{G'}$.
- FPT algo. for bipart. would yield pol. algo. for *s*-*t*-conn.

1 Introduction

2 P-Complete Problems

3 Fixed-Parameter Intractability

4 Summary

- If $P \neq NC$ and $P \neq PSPACE$:
 - P-complete problems cannot be solved by O(log^k n) functional operations.
 - Fundamental graph problems have no OBDD-based FPT algorithms w. r. t. fixed input OBDD width.
 - Even constant input OBDD width does not suffice for polynomial time w.r.t. $m = \Theta(\log n)$.
 - Technique works for many constant depth reductions and read-once projections.
 - ⇒ Practical success of OBDDs has to be explained by further instance properties.

- If $P \neq NC$ and $P \neq PSPACE$:
 - P-complete problems cannot be solved by O(log^k n) functional operations.
 - Fundamental graph problems have no OBDD-based FPT algorithms w. r. t. fixed input OBDD width.
 - Even constant input OBDD width does not suffice for polynomial time w.r.t. m = Θ(log n).
 - Technique works for many constant depth reductions and read-once projections.
 - ⇒ Practical success of OBDDs has to be explained by further instance properties.

- If $P \neq NC$ and $P \neq PSPACE$:
 - P-complete problems cannot be solved by O(log^k n) functional operations.
 - Fundamental graph problems have no OBDD-based FPT algorithms w. r. t. fixed input OBDD width.
 - Even constant input OBDD width does not suffice for polynomial time w.r.t. m = Θ(log n).
 - Technique works for many constant depth reductions and read-once projections.
 - ⇒ Practical success of OBDDs has to be explained by further instance properties.

- If $P \neq NC$ and $P \neq PSPACE$:
 - P-complete problems cannot be solved by O(log^k n) functional operations.
 - Fundamental graph problems have no OBDD-based FPT algorithms w. r. t. fixed input OBDD width.
 - Even constant input OBDD width does not suffice for polynomial time w.r.t. m = Θ(log n).
 - Technique works for many constant depth reductions and read-once projections.
 - ⇒ Practical success of OBDDs has to be explained by further instance properties.

- If $P \neq NC$ and $P \neq PSPACE$:
 - P-complete problems cannot be solved by O(log^k n) functional operations.
 - Fundamental graph problems have no OBDD-based FPT algorithms w. r. t. fixed input OBDD width.
 - Even constant input OBDD width does not suffice for polynomial time w.r.t. m = Θ(log n).
 - Technique works for many constant depth reductions and read-once projections.
 - ⇒ Practical success of OBDDs has to be explained by further instance properties.

"That's all Folks!"