The Complexity of Problems on Implicitly Represented Inputs

Daniel Sawitzki
University of Dortmund, Computer Science 2

SOFSEM 2006, Merin

Daniel Sawitzki

Contents

1 Introduction

2 P-Complete Problems

3 Fixed-Parameter Intractability

4 Summary

Implicit Data Representation

Definition

An implicit data representation avoids explicit enumeration of single elements.

- Focus: Representation by Boolean functions.
- Consider string $I \in\{0,1\}^{n}$ of length $n=2^{m}$.
- Define the characteristic function $\chi_{I}:\{0,1\}^{m} \rightarrow\{0,1\}$ of I by
for $x \in\{0,1\}^{m}$.

Implicit Data Representation

Definition

An implicit data representation avoids explicit enumeration of single elements.

- Focus: Representation by Boolean functions.
- Consider string $I \in\{0,1\}^{n}$ of length $n=2^{m}$.
- Define the characteristic function $\chi_{I}:\{0,1\}^{m} \rightarrow\{0,1\}$ of $/$ by

for $x \in\{0,1\}^{m}$.

Implicit Data Representation

Definition

An implicit data representation avoids explicit enumeration of single elements.

- Focus: Representation by Boolean functions.
- Consider string $I \in\{0,1\}^{n}$ of length $n=2^{m}$.

■ Define the characteristic function $\chi_{I}:\{0,1\}^{m} \rightarrow\{0,1\}$ of I by

$$
\chi_{I}(x)=I_{|x|}
$$

for $x \in\{0,1\}^{m}$.

Implicit Algorithms and OBDDs

■ Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)

- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.

■ Implicit/symbolic algorithms:

- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Algorithms and OBDDs

- Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)
- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations. ■ \Rightarrow Implicit/symbolic algorithms:
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Algorithms and OBDDs

■ Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)

- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.

■ \Rightarrow Implicit/symbolic algorithms

- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Algorithms and OBDDs

■ Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)

- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.

■ \Rightarrow Implicit/symbolic algorithms:

- Represent input $I \in\{0,1\}^{n}$ implicitly as OBDD of χ_{I}
- Compute OBDD of χ_{O} for output $O \in\{0,1\}$
- Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Algorithms and OBDDs

■ Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)

- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.

■ \Rightarrow Implicit/symbolic algorithms:

- Represent input $I \in\{0,1\}^{n}$ implicitly as OBDD of χ_{I}.
- Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Algorithms and OBDDs

■ Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)

- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.

■ \Rightarrow Implicit/symbolic algorithms:

- Represent input $I \in\{0,1\}^{n}$ implicitly as OBDD of χ_{I}.

■ Compute OBDD of χ_{o} for output $O \in\{0,1\}^{*}$.

- Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Algorithms and OBDDs

■ Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)

- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.

■ \Rightarrow Implicit/symbolic algorithms:

- Represent input $I \in\{0,1\}^{n}$ implicitly as OBDD of χ_{I}.
- Compute OBDD of χ_{o} for output $O \in\{0,1\}^{*}$.
- Process implicit data via functional OBDD operations.
- Hope: Efficient (sublinear) heuristic on large but structured problem instances

Implicit Algorithms and OBDDs

■ Popular data structure for Boolean functions: Ordered Binary Decision Diagrams (OBDDs)

- OBDDs of structured functions are known to be very succinct.
- OBDDs offer efficient algorithms for functional operations.

■ \Rightarrow Implicit/symbolic algorithms:

- Represent input $I \in\{0,1\}^{n}$ implicitly as OBDD of χ_{I}.
- Compute OBDD of χ_{o} for output $O \in\{0,1\}^{*}$.
- Process implicit data via functional OBDD operations.

■ Hope: Efficient (sublinear) heuristic on large but structured problem instances

Summary

Ordered Binary Decision Diagrams (OBDDs)

- Data structure for $f:\{0,1\}^{m} \rightarrow\{0,1\}$ with Vars. $x_{0}, \ldots, x_{m-1} \in\{0,1\}$ - OBDD \mathcal{G}_{f} is acyclic digraph having inner nodes and sinks.
- Inner nodes: Variable label, 0- and
\square
- Sink represents value $f\left(x_{0}, \ldots, x_{m-1}\right)$.
- Source pointer s

■ Reads vars. w. r.t. $\pi \in \Sigma_{m}$

Ordered Binary Decision Diagrams (OBDDs)

- Data structure for $f:\{0,1\}^{m} \rightarrow\{0,1\}$ with Vars. $x_{0}, \ldots, x_{m-1} \in\{0,1\}$
■ OBDD \mathcal{G}_{f} is acyclic digraph having inner nodes and sinks.
- Inner nodes: Variable label, 0- and 1-edge
$=$ Sink represents value $f\left(x_{0}, \ldots, x_{m-1}\right)$.
- Source pointer s
- Reads vars. w.r.t. $\pi \in \Sigma_{m}$.

Ordered Binary Decision Diagrams (OBDDs)

- Data structure for $f:\{0,1\}^{m} \rightarrow\{0,1\}$ with Vars. $x_{0}, \ldots, x_{m-1} \in\{0,1\}$
■ OBDD \mathcal{G}_{f} is acyclic digraph having inner nodes and sinks.

■ Inner nodes: Variable label, 0- and 1-edge

- Sink represents value $f\left(x_{0}, \ldots, x_{m-1}\right)$.

■ Source pointer s
$■$ Reads vars. w.r.t. $\pi \in \Sigma_{m}$

Ordered Binary Decision Diagrams (OBDDs)

- Data structure for $f:\{0,1\}^{m} \rightarrow\{0,1\}$ with Vars. $x_{0}, \ldots, x_{m-1} \in\{0,1\}$
■ OBDD \mathcal{G}_{f} is acyclic digraph having inner nodes and sinks.

■ Inner nodes: Variable label, 0- and 1-edge
■ Sink represents value $f\left(x_{0}, \ldots, x_{m-1}\right)$.

- Source pointer s
- Reads vars. w. r.t. $\pi \in \Sigma_{m}$.

Ordered Binary Decision Diagrams (OBDDs)

- Data structure for $f:\{0,1\}^{m} \rightarrow\{0,1\}$ with Vars. $x_{0}, \ldots, x_{m-1} \in\{0,1\}$
■ OBDD \mathcal{G}_{f} is acyclic digraph having inner nodes and sinks.
■ Inner nodes: Variable label, 0- and 1-edge
■ Sink represents value $f\left(x_{0}, \ldots, x_{m-1}\right)$.
■ Source pointer s
- Reads vars. w. r.t. $\pi \in \Sigma_{m}$.

Ordered Binary Decision Diagrams (OBDDs)

- Data structure for $f:\{0,1\}^{m} \rightarrow\{0,1\}$ with Vars. $x_{0}, \ldots, x_{m-1} \in\{0,1\}$
■ OBDD \mathcal{G}_{f} is acyclic digraph having inner nodes and sinks.
■ Inner nodes: Variable label, 0- and 1-edge
■ Sink represents value $f\left(x_{0}, \ldots, x_{m-1}\right)$.
- Source pointer s

■ Reads vars. w. r.t. $\pi \in \Sigma_{m}$.

Summary

Algorithmic Properties of OBDDs

- Every function f on m vars. has at most OBDD size $\mathcal{O}\left(2^{m} / m\right)$.
- Hope for structured functions: OBDD size poly (m)
- Efficient operations for OBDDs \mathcal{G}_{f} and \mathcal{G}_{h} :

Algorithmic Properties of OBDDs

- Every function f on m vars. has at most OBDD size $\mathcal{O}\left(2^{m} / m\right)$.
■ Hope for structured functions: OBDD size poly (m)
- Efficient operations for OBDDs \mathcal{G}_{f} and \mathcal{G}_{h} :

Algorithmic Properties of OBDDs

- Every function f on m vars. has at most OBDD size $\mathcal{O}\left(2^{m} / m\right)$.
■ Hope for structured functions: OBDD size poly (m)
■ Efficient operations for OBDDs \mathcal{G}_{f} and \mathcal{G}_{h} :

Algorithmic Properties of OBDDs

- Every function f on m vars. has at most OBDD size $\mathcal{O}\left(2^{m} / m\right)$.
■ Hope for structured functions: OBDD size poly (m)
■ Efficient operations for OBDDs \mathcal{G}_{f} and \mathcal{G}_{h} :
- Satisfiability: $f \not \equiv 0$

Algorithmic Properties of OBDDs

- Every function f on m vars. has at most OBDD size $\mathcal{O}\left(2^{m} / m\right)$.
■ Hope for structured functions: OBDD size poly (m)
■ Efficient operations for OBDDs \mathcal{G}_{f} and \mathcal{G}_{h} :
- Satisfiability: $f \not \equiv 0$
- Equivalence: $f=h$

Algorithmic Properties of OBDDs

- Every function f on m vars. has at most OBDD size $\mathcal{O}\left(2^{m} / m\right)$.
■ Hope for structured functions: OBDD size poly (m)
■ Efficient operations for OBDDs \mathcal{G}_{f} and \mathcal{G}_{h} :
- Satisfiability: $f \not \equiv 0$
- Equivalence: $f=h$
- Variable replacement: $f_{\mid \mathrm{x}_{i}=0 / 1}$

Algorithmic Properties of OBDDs

- Every function f on m vars. has at most OBDD size $\mathcal{O}\left(2^{m} / m\right)$.
- Hope for structured functions: OBDD size poly (m)

■ Efficient operations for OBDDs \mathcal{G}_{f} and \mathcal{G}_{h} :

- Satisfiability: $f \not \equiv 0$
- Equivalence: $f=h$
- Variable replacement: $f_{\mid x_{i}=0 / 1}$
- Binary synthesis: $f \otimes h$ for $\otimes=\vee, \wedge, \oplus, \ldots$

Algorithmic Properties of OBDDs

- Every function f on m vars. has at most OBDD size $\mathcal{O}\left(2^{m} / m\right)$.
- Hope for structured functions: OBDD size poly (m)

■ Efficient operations for OBDDs \mathcal{G}_{f} and \mathcal{G}_{h} :

- Satisfiability: $f \not \equiv 0$
- Equivalence: $f=h$
- Variable replacement: $f_{\mid x_{i}=0 / 1}$
- Binary synthesis: $f \otimes h$ for $\otimes=\vee, \wedge, \oplus, \ldots$
- Quantification: $\left(\exists / \forall x_{i}\right) f$

Summary

Implicit Graph Algorithms: An Example

Example: An implicit BFS algorithm on χ_{G} for

$$
\chi_{G}(x, y)=1 \Leftrightarrow\left(v_{|x|}, v_{|y|}\right) \in E
$$

$$
i:=0 ; R_{0}(x):=(|x|=s)
$$

repeat

$N(x):=(\exists y)\left[\chi_{G}(y, x) \wedge R_{i}(y) \wedge \overline{R_{i}(x)}\right]$
$R_{i+1}(x):=R_{i}(x) \vee N(x)$
$i:=i+1$
until $R_{i}=R_{i-1}$

State of Affairs

■ Situation until 2002:

- OBDDs well established in CAD, Model Checking,
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

- Recent contributions:

- This talk:

Summary

State of Affairs

■ Situation until 2002:
■ OBDDs well established in CAD, Model Checking, ... - Pure heuristics for mostly application-specific problems - No theoretical analyses of time/space - Recent contributions:

- This talk:

Summary

State of Affairs

■ Situation until 2002:
■ OBDDs well established in CAD, Model Checking, ...

- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

■ Recent contributions:

- This talk

State of Affairs

■ Situation until 2002:
■ OBDDs well established in CAD, Model Checking, ...

- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space
- Recent contributions:
- This talk

Summary

State of Affairs

■ Situation until 2002:
■ OBDDs well established in CAD, Model Checking, ...

- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

■ Recent contributions:

- Implicit algorithms for many graph-theoretic problems (Flows,

Shortest Paths, Topological Sorting,

- Polylogarithmic upper bounds for structured instances
- Polynomial lower bounds for certain structured instances
- This talk

State of Affairs

■ Situation until 2002:
■ OBDDs well established in CAD, Model Checking, ...

- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

■ Recent contributions:

- Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
- Polylogarithmic upper bounds for structured instances
- Polynomial lower bounds for certain structured instances
- This tall.

State of Affairs

■ Situation until 2002:
■ OBDDs well established in CAD, Model Checking, ...

- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

■ Recent contributions:

- Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
- Polylogarithmic upper bounds for structured instances
- This talk:

State of Affairs

■ Situation until 2002:
■ OBDDs well established in CAD, Model Checking, ...

- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

■ Recent contributions:

- Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
- Polylogarithmic upper bounds for structured instances
- Polynomial lower bounds for certain structured instances
- This talk

State of Affairs

■ Situation until 2002:
■ OBDDs well established in CAD, Model Checking, ...

- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

■ Recent contributions:

- Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
- Polylogarithmic upper bounds for structured instances
- Polynomial lower bounds for certain structured instances

■ This talk:

- A lower bound for P-complete problems
- Fixed-parameter intractability of basic graph problems

State of Affairs

■ Situation until 2002:

- OBDDs well established in CAD, Model Checking, ...
- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

■ Recent contributions:

- Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)
- Polylogarithmic upper bounds for structured instances
- Polynomial lower bounds for certain structured instances
- This talk:
- A lower bound for P-complete problems
- Fixed-parameter intractability of basic graph problems

State of Affairs

■ Situation until 2002:
■ OBDDs well established in CAD, Model Checking, ...

- Pure heuristics for mostly application-specific problems
- No theoretical analyses of time/space

■ Recent contributions:
■ Implicit algorithms for many graph-theoretic problems (Flows, Shortest Paths, Topological Sorting, ...)

- Polylogarithmic upper bounds for structured instances
- Polynomial lower bounds for certain structured instances
- This talk:
- A lower bound for P-complete problems
- Fixed-parameter intractability of basic graph problems

Summary

Contents

1 Introduction

2 P-Complete Problems

3 Fixed-Parameter Intractability

4 Summary

The Number of Functional Operations

■ Efficient implicit algos. execute few operations on small data structures.

- Many works just consider the number of operations (SCCs, Gentilini et al., SODA'03)
- General goal: Design algorithms with $O\left(\log ^{k} n\right)$ operations.
n New result: Impossible for P-complete problem (unless $\mathrm{P}=\mathrm{NC})$!

The Number of Functional Operations

■ Efficient implicit algos. execute few operations on small data structures.

- Many works just consider the number of operations (SCCs, Gentilini et al., SODA'03).
- General goal: Design algorithms with $\mathcal{O}\left(\log ^{k} n\right)$ operations.
- New result: Impossible for P-complete problem (unless $\mathrm{P}=\mathrm{NC})$!

The Number of Functional Operations

■ Efficient implicit algos. execute few operations on small data structures.

- Many works just consider the number of operations (SCCs, Gentilini et al., SODA'03).
■ General goal: Design algorithms with $\mathcal{O}\left(\log ^{k} n\right)$ operations.
- New result: Impossible for P-complete problem (unless $\mathrm{P}=\mathrm{NC})$!

The Number of Functional Operations

■ Efficient implicit algos. execute few operations on small data structures.

- Many works just consider the number of operations (SCCs, Gentilini et al., SODA'03).
■ General goal: Design algorithms with $\mathcal{O}\left(\log ^{k} n\right)$ operations.
■ New result: Impossible for P-complete problem (unless $\mathrm{P}=\mathrm{NC})$!

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_{0}, S_{1}, \ldots each holding a Boolean function $f:\{0,1\}^{m} \rightarrow\{0,1\}$. It offers ops. to

- get/increase m,
- evaluate S_{i} due to $a \in\{0,1\}^{m}$,
- read f from standard registers into S_{i}
- copy/negate symbolic registers.
- compute $S_{i} \otimes S_{j}$
- [...]
each of cost 1. Input $\chi_{/}$and output χ_{0} are located in S_{0}

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_{0}, S_{1}, \ldots each holding a Boolean function $f:\{0,1\}^{m} \rightarrow\{0,1\}$. It offers ops. to

- get/increase m,
- evaluate S_{i} due to $a \in\{0,1\}^{m}$,
- read f from standard registers into S_{i}
- copy/negate symbolic registers,
- compute $S_{i} \otimes S_{i}$
- [...]
each of cost 1. Input χ_{I} and output χ_{0} are located in S_{0}

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_{0}, S_{1}, \ldots each holding a Boolean function $f:\{0,1\}^{m} \rightarrow\{0,1\}$. It offers ops. to

- get/increase m,

■ evaluate S_{i} due to $a \in\{0,1\}^{m}$,

- read f from standard registers into S_{i}.
- copy/negate symbolic registers
- compute $S_{i} \otimes S_{j}$
- [...]
each of cost 1. Input χ_{1} and output χ_{0} are located in S_{0}

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_{0}, S_{1}, \ldots each holding a Boolean function $f:\{0,1\}^{m} \rightarrow\{0,1\}$. It offers ops. to

- get/increase m,

■ evaluate S_{i} due to $a \in\{0,1\}^{m}$,

- read f from standard registers into S_{i}.
- copy/negate symbolic registers,
- compute $S_{i} \otimes S_{j}$

each of cost 1. Input χ_{I} and output χ_{0} are located in S_{0}

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_{0}, S_{1}, \ldots each holding a Boolean function $f:\{0,1\}^{m} \rightarrow\{0,1\}$. It offers ops. to

- get/increase m,

■ evaluate S_{i} due to $a \in\{0,1\}^{m}$,

- read f from standard registers into S_{i}.
- copy/negate symbolic registers,
- compute $S_{i} \otimes S_{j}$,

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_{0}, S_{1}, \ldots each holding a Boolean function $f:\{0,1\}^{m} \rightarrow\{0,1\}$. It offers ops. to

- get/increase m,

■ evaluate S_{i} due to $a \in\{0,1\}^{m}$,

- read f from standard registers into S_{i}.
- copy/negate symbolic registers,
- compute $S_{i} \otimes S_{j}$,
- [...]
each of cost 1. Input χ_{I} and output χ_{0} are located in S_{0}

A Framework for Implicit Algorithms

Definition

A symbolic register access machine (SRAM) is a RAM with additional symbolic regs. S_{0}, S_{1}, \ldots each holding a Boolean function $f:\{0,1\}^{m} \rightarrow\{0,1\}$. It offers ops. to

- get/increase m,

■ evaluate S_{i} due to $a \in\{0,1\}^{m}$,
■ read f from standard registers into S_{i}.

- copy/negate symbolic registers,
- compute $S_{i} \otimes S_{j}$,
- [...]
each of cost 1. Input χ_{I} and output χ_{O} are located in S_{0}.

A Framework for Implicit Algorithms

■ SRAM model captures capabilties of "all" implicit (OBDD-based) algorithms.

- Implicit algorithm with $t(n)$ operations \Rightarrow SRAM with time $\mathcal{O}(t(n))$

Theorem

SRAMA on input χ, with time $t(n)$ and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}\left((t(n))^{2} \cdot \log ^{2} n\right)$ with $\mathcal{O}\left(n^{k}\right)$ processors on $I \in\{0,1\}^{n}$

A Framework for Implicit Algorithms

■ SRAM model captures capabilties of "all" implicit (OBDD-based) algorithms.

- Implicit algorithm with $t(n)$ operations \Rightarrow SRAM with time $\mathcal{O}(t(n))$.

Theorem

SRAM on invut χ_{I} with time $t(n)$ and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}\left((t(n))^{2} \cdot \log ^{2} n\right)$ with $\mathcal{O}\left(n^{k}\right)$ processors on $I \in\{0,1\}^{n}$.

A Framework for Implicit Algorithms

■ SRAM model captures capabilties of "all" implicit (OBDD-based) algorithms.

- Implicit algorithm with $t(n)$ operations \Rightarrow SRAM with time $\mathcal{O}(t(n))$.

Theorem

SRAM on input χ_{I} with time $t(n)$ and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}\left((t(n))^{2} \cdot \log ^{2} n\right)$ with $\mathcal{O}\left(n^{k}\right)$ processors on $I \in\{0,1\}^{n}$.

Simulating SRAMs by PRAMs

Theorem

SRAM on input χ_{I} with time $t(n)$ and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}\left((t(n))^{2} \cdot \log ^{2} n\right)$ with $\mathcal{O}\left(n^{k}\right)$ processors on $I \in\{0,1\}^{n}$.

Sketch of proof:
■ Handle values $S_{0}(a), \ldots, S_{r}(a)$ by processor P_{a} for $a \in\{0,1\}^{m}$ and $r \leq t(n)$.
■ $\Rightarrow \mathcal{O}\left(2^{m}\right)=\mathcal{O}\left(n^{k}\right)$ processors.

- Simulate each symbolic op. in parallel time $\mathcal{O}\left(t(n) \cdot \log ^{2} n\right)$
- Example \wedge : Each P_{a} computes $S_{i}(a) \wedge S_{i}(a)$.

Simulating SRAMs by PRAMs

Theorem

SRAM on input χ_{I} with time $t(n)$ and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}\left((t(n))^{2} \cdot \log ^{2} n\right)$ with $\mathcal{O}\left(n^{k}\right)$ processors on $I \in\{0,1\}^{n}$.

Sketch of proof:
■ Handle values $S_{0}(a), \ldots, S_{r}(a)$ by processor P_{a} for $a \in\{0,1\}^{m}$ and $r \leq t(n)$.
■ $\Rightarrow \mathcal{O}\left(2^{m}\right)=\mathcal{O}\left(n^{k}\right)$ processors.

- Simulate each symbolic op. in parallel time $\mathcal{O}\left(t(n) \cdot \log ^{2} n\right)$
- Example \wedge : Each P_{a} computes $S_{i}(a) \wedge S_{j}(a)$.

Simulating SRAMs by PRAMs

Theorem

SRAM on input χ_{I} with time $t(n)$ and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}\left((t(n))^{2} \cdot \log ^{2} n\right)$ with $\mathcal{O}\left(n^{k}\right)$ processors on $I \in\{0,1\}^{n}$.

Sketch of proof:
■ Handle values $S_{0}(a), \ldots, S_{r}(a)$ by processor P_{a} for $a \in\{0,1\}^{m}$ and $r \leq t(n)$.
■ $\Rightarrow \mathcal{O}\left(2^{m}\right)=\mathcal{O}\left(n^{k}\right)$ processors.

- Simulate each symbolic op. in parallel time $\mathcal{O}\left(t(n) \cdot \log ^{2} n\right)$.
- Example \wedge : Each P_{a} computes $S_{i}(a) \wedge S_{j}(a)$

Simulating SRAMs by PRAMs

Theorem

SRAM on input χ_{I} with time $t(n)$ and $m \leq k \log n$ variables can be simulated by PRAM in parallel time $\mathcal{O}\left((t(n))^{2} \cdot \log ^{2} n\right)$ with $\mathcal{O}\left(n^{k}\right)$ processors on $I \in\{0,1\}^{n}$.

Sketch of proof:
■ Handle values $S_{0}(a), \ldots, S_{r}(a)$ by processor P_{a} for $a \in\{0,1\}^{m}$ and $r \leq t(n)$.
■ $\Rightarrow \mathcal{O}\left(2^{m}\right)=\mathcal{O}\left(n^{k}\right)$ processors.

- Simulate each symbolic op. in parallel time $\mathcal{O}\left(t(n) \cdot \log ^{2} n\right)$.

■ Example \wedge : Each P_{a} computes $S_{i}(a) \wedge S_{j}(a)$.

Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time $\mathcal{O}\left(\log ^{k} n\right)$ on $\mathcal{O}\left(n^{k}\right)$ processors unless $P=N C$.

Corollary
P-complete problems have no implicit algorithms with $O\left(\log ^{k} n\right)$ functional operations on $\leq k \log n$ variables unless $P=N C$

Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time $\mathcal{O}\left(\log ^{k} n\right)$ on $\mathcal{O}\left(n^{k}\right)$ processors unless $P=N C$.

Corollary

P-complete problems have no implicit algorithms with $\mathcal{O}\left(\log ^{k} n\right)$ functional operations on $\leq k \log n$ variables unless $P=N C$.

- Example: Flow maximization is P -complete.
- Onen: Is 0-1 flow maximization P-complete?
$\square \Rightarrow$ No polylog. implicit algo. yet. (S., SOFSEM'04)

Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time $\mathcal{O}\left(\log ^{k} n\right)$ on $\mathcal{O}\left(n^{k}\right)$ processors unless $P=N C$.

Corollary

P-complete problems have no implicit algorithms with $\mathcal{O}\left(\log ^{k} n\right)$ functional operations on $\leq k \log n$ variables unless $P=N C$.

- Example: Flow maximization is P-complete.
- Open: Is 0-1 flow maximization P-complete?
$■ \Rightarrow$ No polylog. implicit algo. yet. (S., SOFSEM'04)

Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time $\mathcal{O}\left(\log ^{k} n\right)$ on $\mathcal{O}\left(n^{k}\right)$ processors unless $P=N C$.

Corollary

P-complete problems have no implicit algorithms with $\mathcal{O}\left(\log ^{k} n\right)$ functional operations on $\leq k \log n$ variables unless $P=N C$.

- Example: Flow maximization is P-complete.
- Open: Is 0-1 flow maximization P-complete?
$\square \Rightarrow$ No polylog. implicit algo. yet. (S., SOFSEM'04)

Result for P-complete Problems

Theorem

P-complete problems have no PRAMs with time $\mathcal{O}\left(\log ^{k} n\right)$ on $\mathcal{O}\left(n^{k}\right)$ processors unless $P=N C$.

Corollary

P-complete problems have no implicit algorithms with $\mathcal{O}\left(\log ^{k} n\right)$ functional operations on $\leq k \log n$ variables unless $P=N C$.

- Example: Flow maximization is P -complete.
- Open: Is 0-1 flow maximization P-complete?
$■ \Rightarrow$ No polylog. implicit algo. yet. (S., SOFSEM'04)

Contents

1 Introduction

2 P-Complete Problems

3 Fixed-Parameter Intractability

4 Summary

s-t-Connectivity in OBDD-represented Graphs

■ Input: $\chi_{G}(x, y)=1 \Leftrightarrow\left(v_{|x|}, v_{|y|}\right) \in E, s, t \in V$

- Feigenbaum et al. (STACS'98): PSPACE-hard!
- W.r.t. graph size: No $\mathcal{O}\left(\log ^{k}|V|\right)$-algorithm.

■ Question: Which input OBDD properties might enable polynomial complexity?

s-t-Connectivity in OBDD-represented Graphs

■ Input: $\chi_{G}(x, y)=1 \Leftrightarrow\left(v_{|x|}, v_{|y|}\right) \in E, s, t \in V$
■ Feigenbaum et al. (STACS'98): PSPACE-hard!

> Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
> - For $\Pi \in P S P A C E, T M ~ M_{\Pi}$ and input / $\in\{0,1\}^{m}$: Construct

> OBDD $\chi_{\pi, \jmath}$ of size $\mathcal{O}($ poly $(m))$
> - Ask if start config. is connected to accepting config.

- W. r.t. graph size: No $\mathcal{O}\left(\log ^{k}|V|\right)$-algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

s-t-Connectivity in OBDD-represented Graphs

- Input: $\chi_{G}(x, y)=1 \Leftrightarrow\left(v_{|x|}, v_{|y|}\right) \in E, s, t \in V$

■ Feigenbaum et al. (STACS'98): PSPACE-hard!

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.

- W. r.t. graph size: No $\mathcal{O}\left(\log ^{k}|V|\right)$-algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

s-t-Connectivity in OBDD-represented Graphs

- Input: $\chi_{G}(x, y)=1 \Leftrightarrow\left(v_{|x|}, v_{|y|}\right) \in E, s, t \in V$

■ Feigenbaum et al. (STACS'98): PSPACE-hard!

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
- For $\Pi \in P S P A C E, T M ~ M \Pi$ and input $I \in\{0,1\}^{m}$: Construct OBDD $\chi_{\pi, I}$ of size $\mathcal{O}(\operatorname{poly}(m))$.
- Ask if start config. is connected to accepting config.
- W. r.t. graph size: No $\mathcal{O}\left(\log ^{k}|V|\right)$-algorithm.

■ Question: Which input OBDD properties might enable polynomial complexity?

s-t-Connectivity in OBDD-represented Graphs

■ Input: $\chi_{G}(x, y)=1 \Leftrightarrow\left(v_{|x|}, v_{|y|}\right) \in E, s, t \in V$
■ Feigenbaum et al. (STACS'98): PSPACE-hard!

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
- For $\Pi \in P S P A C E, T M ~ M \Pi$ and input $I \in\{0,1\}^{m}$: Construct OBDD $\chi_{\pi, \iota}$ of size $\mathcal{O}(\operatorname{poly}(m))$.
■ Ask if start config. is connected to accepting config.
- W.r.t. graph size: No $\mathcal{O}\left(\log ^{k}|V|\right)$-algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

s-t-Connectivity in OBDD-represented Graphs

■ Input: $\chi_{G}(x, y)=1 \Leftrightarrow\left(v_{|x|}, v_{|y|}\right) \in E, s, t \in V$
■ Feigenbaum et al. (STACS'98): PSPACE-hard!

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
- For $\Pi \in P S P A C E, T M ~ M \Pi$ and input $I \in\{0,1\}^{m}$: Construct OBDD $\chi_{\pi, \iota}$ of size $\mathcal{O}(\operatorname{poly}(m))$.
- Ask if start config. is connected to accepting config.
- W. r. t. graph size: No $\mathcal{O}\left(\log ^{k}|V|\right)$-algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

s-t-Connectivity in OBDD-represented Graphs

■ Input: $\chi_{G}(x, y)=1 \Leftrightarrow\left(v_{|x|}, v_{|y|}\right) \in E, s, t \in V$
■ Feigenbaum et al. (STACS'98): PSPACE-hard!

- Technique: Construct small OBDD for configuration transition relation of pol. space bounded TM.
- For $\Pi \in P S P A C E, T M ~ M \Pi$ and input $I \in\{0,1\}^{m}$: Construct OBDD $\chi_{\pi, \iota}$ of size $\mathcal{O}(\operatorname{poly}(m))$.
- Ask if start config. is connected to accepting config.
- W. r.t. graph size: No $\mathcal{O}\left(\log ^{k}|V|\right)$-algorithm.
- Question: Which input OBDD properties might enable polynomial complexity?

Definition of OBDD Width

Definition

The OBDD width is the maximum number of nodes labeled the same variable.

OBDD Width as Fixed Parameter

- Are there efficient algorithms for inputs with small OBDD width W?
- For width W of χ_{G} and some function α
- Parameterized complexity $\mathcal{O}\left(\log ^{k}|V| \cdot \alpha(W)\right)$ possible?
- Feigenbaum proof: $W=\mathcal{O}(1) \Rightarrow$ No FPT-algo. for s-t-conn
- New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs

Theorem

None of the problems s-t-conn., APSP, MaxFlow, Acyclicity
Connectivity, Bipartiteness, Eulerian-Cycle, and Planarity on
OBDD-represented graphs has an FPT-algo. unless $P=P S P A C E$

Daniel Sawitzki
The Complexity of Problems on Implicitly Represented Inputs

OBDD Width as Fixed Parameter

■ Are there efficient algorithms for inputs with small OBDD width W?

■ For width W of χ_{G} and some function α :

- Parameterized complexity $\mathcal{O}\left(\log ^{k}|V| \cdot \alpha(W)\right)$ possible?
- Feigenbaum proof: $W=\mathcal{O}(1) \Rightarrow$ No FPT-algo. for s-t-conn
- New contribution: Fixed-narameter intractability for further problems on OBDD-represented graphs

Theorem

None of the problems s-t-conn., APSP, MaxFlow, Acyclicity
Connectivity, Bipartiteness, Eulerian-Cycle, and Planarity on
OBDD-represented graphs has an FPT-algo. unless $P=P S P A C E$

Daniel Sawitzki

OBDD Width as Fixed Parameter

- Are there efficient algorithms for inputs with small OBDD width W?

■ For width W of χ_{G} and some function α :
■ Parameterized complexity $\mathcal{O}\left(\log ^{k}|\boldsymbol{V}| \cdot \alpha(W)\right)$ possible?

- Feigenbaum proof: $W=\mathcal{O}(1) \Rightarrow$ No FPT-algo. for s-t-conn
- New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs.

[^0]Daniel Sawitzki

OBDD Width as Fixed Parameter

- Are there efficient algorithms for inputs with small OBDD width W?

■ For width W of χ_{G} and some function α :
■ Parameterized complexity $\mathcal{O}\left(\log ^{k}|V| \cdot \alpha(W)\right)$ possible?
■ Feigenbaum proof: $W=\mathcal{O}(1) \Rightarrow$ No FPT-algo. for s - t-conn.

- New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs.

[^1]
OBDD Width as Fixed Parameter

■ Are there efficient algorithms for inputs with small OBDD width W?

■ For width W of χ_{G} and some function α :
■ Parameterized complexity $\mathcal{O}\left(\log ^{k}|V| \cdot \alpha(W)\right)$ possible?
■ Feigenbaum proof: $W=\mathcal{O}(1) \Rightarrow$ No FPT-algo. for s - t-conn.
■ New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs.

> Theorem
> None of the problems s-t-conn., APSP, MaxFlow, Acyclicity
> Connectivity, Bipartiteness, Eulerian-Cycle, and Planarity on
> OBDD-represented graphs has an FPT-algo. unless $P=P S P A C E$

OBDD Width as Fixed Parameter

- Are there efficient algorithms for inputs with small OBDD width W?

■ For width W of χ_{G} and some function α :
■ Parameterized complexity $\mathcal{O}\left(\log ^{k}|V| \cdot \alpha(W)\right)$ possible?
■ Feigenbaum proof: $W=\mathcal{O}(1) \Rightarrow$ No FPT-algo. for s - t-conn.
■ New contribution: Fixed-parameter intractability for further problems on OBDD-represented graphs.

Theorem

None of the problems s-t-conn., APSP, MaxFlow, Acyclicity, Connectivity, Bipartiteness, Eulerian-Cycle, and Planarity on OBDD-represented graphs has an FPT-algo. unless $P=P S P A C E$.

Width-Preserving Reductions from Π to Π^{\prime}

Map ϕ is width-preserving reduction from Π to Π^{\prime} iff

- it maps OBDD χ_{G} to OBDD $\chi_{G^{\prime}}$ with

- width W^{\prime} of $\chi_{G^{\prime}}$ depends only on W rather than on $|V|$

Theorem

A sequence of $\mathcal{O}(1)$ arbitrary $O B D D$ operations is width-preserving.

Width-Preserving Reductions from Π to Π^{\prime}

Map ϕ is width-preserving reduction from Π to Π^{\prime} iff
■ it maps OBDD χ_{G} to OBDD $\chi_{G^{\prime}}$ with

$$
G \in \Pi \Leftrightarrow G^{\prime} \in \Pi^{\prime}
$$

- width W^{\prime} of $\chi_{G^{\prime}}$ depends only on W rather than on $|V|$

Theorem

A sequence of $O(1)$ arbitrary $O B D D$ operations is width-preserving.

Width-Preserving Reductions from Π to Π^{\prime}

Map ϕ is width-preserving reduction from Π to Π^{\prime} iff
■ it maps OBDD χ_{G} to OBDD $\chi_{G^{\prime}}$ with

$$
G \in \Pi \Leftrightarrow G^{\prime} \in \Pi^{\prime}
$$

■ width W^{\prime} of $\chi_{G^{\prime}}$ depends only on W rather than on $|V|$.

Theorem

A seauence of $O(1)$ arbitrary $O B D D$ operations is width-preserving.

Width-Preserving Reductions from Π to Π^{\prime}

Map ϕ is width-preserving reduction from Π to Π^{\prime} iff
■ it maps OBDD χ_{G} to OBDD $\chi_{G^{\prime}}$ with

$$
G \in \Pi \Leftrightarrow G^{\prime} \in \Pi^{\prime}
$$

■ width W^{\prime} of $\chi_{G^{\prime}}$ depends only on W rather than on $|V|$.

Theorem

A sequence of $\mathcal{O}(1)$ arbitrary $O B D D$ operations is width-preserving.

Fixed-Parameter Intractability of Bipartiteness

Exemplarily reduction from undir. $s-t-c o n n$. to bipart.:

G

- Reduction has constant length expression \Rightarrow width-preserving
- Constant width of χ_{G} implies constant width of $\chi_{G^{\prime}}$
- FPT algo. for bipart. would yield pol. algo. for s-t-conn.

Fixed-Parameter Intractability of Bipartiteness

Exemplarily reduction from undir. $s-t$-conn. to bipart.:

$$
\begin{aligned}
& \chi_{G^{\prime}}(x, y):=\left[(T(x)=v) \wedge(T(y)=e) \wedge(i(x)=i(y)) \wedge(c(x)=c(y)) \wedge \chi_{G}(i(y), j(y))\right] \\
& \vee\left[(T(x)=e) \wedge(T(y)=v) \wedge(j(x)=j(y)) \wedge(c(x)=c(y)) \wedge \chi_{G}(i(x), j(x))\right] \\
& \vee\left[(T(x)=T(y)=v) \wedge\left(v_{|i(x)|}=v_{|i(y)|}=s\right) \wedge(c(x) \neq c(y))\right] \\
& \vee\left[(T(x)=v) \wedge(T(y)=w) \wedge\left(v_{|i(x)|}=t\right)\right],
\end{aligned}
$$

■ Reduction has constant length expression \Rightarrow width-preserving

- Constant width of χ_{G} implies constant width of $\chi_{G^{\prime}}$
- FPT algo. for bipart. would yield pol. algo. for s-t-conn.

Fixed-Parameter Intractability of Bipartiteness

Exemplarily reduction from undir. s - t-conn. to bipart.:

G

■ Reduction has constant length expression \Rightarrow width-preserving
■ Constant width of χ_{G} implies constant width of $\chi_{G^{\prime}}$.

- FPT algo. for bipart. would yield pol. algo. for s - t-conn

Fixed-Parameter Intractability of Bipartiteness

Exemplarily reduction from undir. s - t-conn. to bipart.:

G

■ Reduction has constant length expression \Rightarrow width-preserving
■ Constant width of χ_{G} implies constant width of $\chi_{G^{\prime}}$.
■ FPT algo. for bipart. would yield pol. algo. for s - t-conn.

Contents

1 Introduction

2 P-Complete Problems

3 Fixed-Parameter Intractability

4 Summary

Summary

If $P \neq N C$ and $P \neq P S P A C E$:

- P-complete problems cannot be solved by $\mathcal{O}\left(\log ^{k} n\right)$ functional operations.
- Fundamental graph problems have no OBDD-based FPT algorithms w.r.t. fixed input OBDD width.
- Even constant input OBDD width does not suffice for polynomial time w.r.t. $m=\Theta(\log n)$.
- Technique works for many constant depth reductions and read-once projections.
- \Rightarrow Practical success of OBDDs has to be explained by further instance properties.

Summary

If $P \neq N C$ and $P \neq P S P A C E:$

- P-complete problems cannot be solved by $\mathcal{O}\left(\log ^{k} n\right)$ functional operations.
- Fundamental graph problems have no OBDD-based FPT algorithms w.r.t. fixed input OBDD width.
- Even constant input OBDD width does not suffice for polynomial time w.r.t. $m=\Theta(\log n)$.
- Technique works for many constant depth reductions and read-once projections

■ \Rightarrow Practical success of OBDDs has to be explained by further instance properties

Summary

If $P \neq N C$ and $P \neq P S P A C E$:

- P-complete problems cannot be solved by $\mathcal{O}\left(\log ^{k} n\right)$ functional operations.
- Fundamental graph problems have no OBDD-based FPT algorithms w.r.t. fixed input OBDD width.
- Even constant input OBDD width does not suffice for polynomial time w. r.t. $m=\Theta(\log n)$.
- Technique works for many constant depth reductions and read-once projections.

E \Rightarrow Practical success of OBDDs has to be explained by further instance properties

Summary

If $P \neq N C$ and $P \neq P S P A C E:$

- P-complete problems cannot be solved by $\mathcal{O}\left(\log ^{k} n\right)$ functional operations.
- Fundamental graph problems have no OBDD-based FPT algorithms w.r.t. fixed input OBDD width.
- Even constant input OBDD width does not suffice for polynomial time w. r.t. $m=\Theta(\log n)$.
- Technique works for many constant depth reductions and read-once projections.
n \Rightarrow Practical success of OBDDs has to be explained by further instance properties.

Summary

If $P \neq N C$ and $P \neq P S P A C E:$

- P-complete problems cannot be solved by $\mathcal{O}\left(\log ^{k} n\right)$ functional operations.
- Fundamental graph problems have no OBDD-based FPT algorithms w.r.t. fixed input OBDD width.
- Even constant input OBDD width does not suffice for polynomial time w. r.t. $m=\Theta(\log n)$.
- Technique works for many constant depth reductions and read-once projections.
■ \Rightarrow Practical success of OBDDs has to be explained by further instance properties.

"That's all Folks!"

[^0]: Theorem
 None of the problems s-t-conn., APSP, MaxFlow, Acyclicity
 Connectivity, Bipartiteness, Eulerian-Cycle, and Planarity on
 OBDD-represented graphs has an FPT-algo. unless $P=P S P A C E$

[^1]: Theorem
 None of the problems s-t-conn., APSP, MaxFlow, Acyclicity
 Connectivity, Bipartiteness, Eulerian-Cycle, and Planarity on
 OBDD-represented graphs has an FPT-algo. unless $P=P S P A C E$.

