Small independent edge dominating sets in graphs of maximum degree three

Grażyna Zwoźniak

Grazyna.Zwozniak@ii.uni.wroc.pl

Institute of Computer Science

Wrocław University

Problem definition

- Solution Given a connected undirected graph G = (V, E)
- Find a minimum set of edges $E' \subseteq E(G)$ which fulfils the following conditions:
 - for every edge $(u, w) \in E(G)$ either $(u, w) \in E'$ or one of $(x, u), (w, y) \in E(G)$ belongs to E'
 - no two edges of E' share a common endpoint.

Arbitrary graphs – results

Minimum independent edge dominating set problem is NP-complete even when restricted to planar or bipartite graphs of maximum degree three *M. Yannakakis, F. Gavril, Journal on Appl. Math. 1980*

The problem remains NP-complete for planar bipartite graphs, line graphs, total graphs, planar cubic graphs
J. D. Horton, K. Kilakos, Journal on Disc. Math. 1993

There is a polynomial time algorithm for trees
M. Yannakakis, F. Gavril, Journal on Appl. Math. 1980

Arbitrary graphs – approximation

It is NP-hard to approximate the problem within any factor smaller than 7/6 in general graphs and smaller than 1+1/487 in cubic graphs *M. Chlebík, J. Chlebíková, Algorithms and Computations 2003*

Constructing any maximal matching gives approximation ratio of 2 for the problem

Cubic graphs – results

The minimum independent edge dominating set of an n-vertex cubic graph is at most 9n/20+O(1)
W. Duckworth, N. C. Wormald, 2000

There are families of cubic graphs for which the size of the minimum independent edge dominating set is at least 3n/8 W. Duckworth, N. C. Wormald, 2000

The lower bound for the size of the minimum independent edge dominating set is 3n/10

Our results

An approximation algorithm which finds the independent edge dominating set of size at most 4n/9+1/3 in an n-vertex graph of maximum degree three. As a collorary we obtain an approximation ratio of 40/27 for the problem in cubic graphs.

Rules

Construction of the forest F

1. $F \leftarrow \emptyset$

- 2. $V(T_0) \leftarrow \{r_0, v_1, v_2, v_3\}$, where r_0 is any degree three vertex of Gand $v_1, v_2, v_3 \in \Gamma_G(r_0)$; $E(T_0) \leftarrow \{(r_0, v_1), (r_0, v_2), (r_0, v_3)\}$; let r_0 be a root of T_0 ; $i \leftarrow 0$
- 3. if it is possible find the leftmost leaf in T_i that can be expanded by the Rule 1 and expand it; go to the step 3; else go to the step 4;
- 4. if it is possible find the leftmost leaf in T_i that can be expanded by the Rule 2 and expand it; go to the step 3 else $F \leftarrow F \cup T_i$ and go to the step 5
- 5. if it is possible find the leftmost leaf v in T_i such that Rule 3 can be applied to v and apply this rule to v; $i \leftarrow i + 1$; let T_i be a new tree created in this step; go to the step 3 with T_i else go to the step 5 with the father of T_i

Properties of F

Fact 1 Let $v \in V(T_i), T_i \in F$.

1. If $deg_{T_i}(v) = 2$ and $w \in \Gamma_{T_i}(v)$ then $deg_{T_i}(w) = 3$.

2. If $deg_{T_i}(v) = 2$ and $w \in \Gamma_G(v)$ then $w \in V(T_i)$.

3. If v is adjacent to the vertex $w \in EX \cup R$, $u \in \Gamma_G(v)$ and $u \neq w$ then $u \in V(T_i)$.

The edges $e \in E(G) \setminus E(F)$

Notation

- \checkmark G' current graph
- \checkmark F' current forest
- $\textbf{ } \quad S_{x}^{'} \text{the subtree of } T^{'} \in F^{'} \text{ rooted at some vertex } x \in V(T^{'})$
- EDS(G) independent edge dominating set contructed by our algorithm

DOMINATE_i

- DOMINATE₁($S'_x \cup S'_y$) dominates the edges of the subtrees S'_x , S'_y , where $deg_T(x) = 2$ and x is the endpoint of the edge $(x, y) \in E(G) \setminus E(F)$ together with edges $e \in E(G') \setminus E(F')$ incident to $V(S'_x) \cup V(S'_y)$.
- DOMINATE₂(S'_x) which dominates the edges of some paths which end at the leaves of S'_x and go through the edges $e \in E(G') \setminus E(F')$.
- DOMINATE₃(S'_x) dominates $E(S'_x)$ and all the edges incident to $V(S'_x)$.

Main property

Property 1 The procedure DOMINATE_{*i*}(), $i \in \{1, 2, 3\}$ adds \bar{m} edges to EDS(G) and removes \bar{n} vertices from V(G'), where $\bar{m} \leq \frac{4}{9}\bar{n}$. The only exception may be the case when DOMINATE₃() is applied to the tree rooted at r_0 or at the son of r_0 ; then $\bar{m} \leq \frac{4}{9}\bar{n} + \frac{1}{3}$.

Required edges

DOMINATE₃ (S'_x) when $h(S'_x) = 2$

S_x'' definition

Let S''_x be a subgraph of S'_x which fulfils the following condition: if two edges $(u_1, u_2), (v_1, v_2) \in E(S'_x)$ where either the path from u_2 to x in T' is shorter than the path from v_2 to x in T' or u_2 is on the left of v_2 in S'_x , are incident to an edge $(u_2, v_2) \in REQUIRED(S'_x)$, then the edge $(u_1, u_2) \notin E(S''_x)$.

DOMINATE₃ (S'_x) when $h(S'_x) = 2$ and x = r

DOMINATE₃ (S'_x) when $h(S'_x) = 2$

Impossible to apply $DOMINATE_3(S'_x)$

DOMINATE₃ (S'_x) when $h(S'_x) = 3$

DOMINATE₃ (S'_x) when $h(S'_x) = 3$

DOMINATE (S'_x) when $x = r_0$

DOMINATE (S'_x) when x is the last son of r_0

DOMINATE₁ $(S'_x \cup S'_y)$

DOMINATE₂ (S'_x)

$EDS_T(T')$

- 1. apply procedure EDS_T() to the sons $T'_i \in F'$ of T' (successively from the leftmost to the rightmost);
- **2.** EDS(T').

$EDS(S'_x)$

Let
$$W = \{ u \in V(S'_x) : deg_F(u) = 2 \text{ and } deg_{G'}(u) = 3 \}.$$

- 1. while $W \neq \emptyset$
 - (a) apply in-order search and find the first vertex $u \in W$; let w be such a vertex that $(u, w) \in E(G) \setminus E(F)$;
 - (b) EDS $(S'_{u});$
 - (c) if $w \in V(F')$: EDS(S'_w);
 - (d) if $deg_{G'}(u) = 3$ or $deg_{G'}(w) = 3$: MARK_REQUIRED $(S'_u \cup S'_w)$; DOMINATE_PATHS $(S'_u \cup S'_w)$; DOMINATE₁ $(S'_u \cup S'_w)$;
- 2. MARK(S'_x).

MARK_REQUIRED(S'_x)

Let
$$W = \{(u, w) \in E(G') \setminus E(F') : u \in \overline{L}(S'_x)\}.$$

- 1. $REQUIRED(S'_{x}) := \emptyset$
- 2. while there is a vertex $u \in \overline{L}(S'_x)$ and the edges $(u, v), (u, w) \in W, v \in \overline{L}(S'_x), w \notin \overline{L}(S'_x)$: find the first u, add (u, w) to $REQUIRED(S'_x)$ and remove the edges incident to u, w from W.
- 3. while there is a vertex $u \in \overline{L}(S'_x)$ and the edge $(u, w) \in W$, $w \in EX \cup R$: find the first u, add (u, w) to $REQUIRED(S'_x)$ and remove the edges incident to u, w from W.
- 4. while there is a vertex $u \in \overline{L}(S'_x)$ and the edge $(u, w) \in W$: find the first u, add (u, w) to $REQUIRED(S'_x)$ and remove the edges incident to u, w from W.

DOMINATE_PATHS(S'_x)

- 1. if $TAILS_1(S'_x) \neq \emptyset$ or $EARS_1(S'_x) \neq \emptyset$: DOMINATE₂(S'_x);
- 2. MARK_REQUIRED(S'_x);
- 3. if $TAILS_2(S'_x) \neq \emptyset$ or $EARS_2(S'_x) \neq \emptyset$ or $EARS_3(S'_x) \neq \emptyset$: DOMINATE₂(S'_x); goto 2.

$MARK(S'_x)$

- 1. if $h(S'_x) > 2$: apply procedure MARK() to the trees rooted at the sons of x (successively from the leftmost to the rightmost);
- 2. MARK_REQUIRED (S'_x) ;
- 3. DOMINATE_PATHS(S'_x);
- 4. if x has at most two sons u_i , $1 \le i \le 2$:
 - (a) while DOMINATION_POSSIBLE(S'_{u_i}): DOMINATE₃(S'_{u_i});
 - (b) if DOMINATION_POSSIBLE(S'_x): DOMINATE₃(S'_x); else: return;
- 5. if x has three sons u_i , $1 \le i \le 3$ (in this case $x = r_0$):
 - (a) while DOMINATION_POSSIBLE(S'_{u_i}): DOMINATE₃(S'_{u_i});
 - (b) if $h(S'_{r_0}) > 1$ and $deg_{G'}(r_0) = 3$: let $u_3 \notin V(\bar{S}'_{r_0})$;
 - i. DOMINATE $_3(\bar{S}'_{r_0});$

ii. if $u_3 \in V(G')$: MARK_REQUIRED (S'_{u_3}) ; DOMINATE $_3(S'_{u_3})$;

(c) else if $r_0 \in V(G')$: DOMINATE $_3(S'_{\hat{r}_0})$ here a comparison of maximum degree three - p. 31/34

Properties of F

Fact 2 Let $deg_T(u) = deg_T(w) = 2$, $T \in F$, $(u, w) \in E(G) \setminus E(F)$, $a = LCA_T(u, w)$ and let u be on the left of w in T. Then w is the right son of a, and there are no vertices of degree 2 on the path from u to ain T.

Properties of F

Fact 3 Let r be a root of a tree $T \in F$. Let $u \in \overline{L}(T)$ and let w be the first vertex of degree 2 on the path from u to r in T. If there is $v \in V(T)$ such that $deg_F(v) = 2$ and $(u, v) \in E(G) \setminus E(T)$ then w is an ancestor of v in T.

Main theorem

Theorem 1 Let *G* be a graph of maximum degree three, where |V(G)| = n. Our algorithm constructs for *G* an independent edge dominating set EDS(G) of size at most 4n/9 + 1/3 in linear time.