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Multicut

Definition

Input:

Undirected graph G = (V ,E )

Set of terminals S ⊆ V

Set of pairs of terminals H ⊆ S × S

Task: Find a minimum set of edges or vertices whose removal
disconnects each pair of H.

edge deletion vertex deletion
Multiterminal Cut (MTC) Unrestricted Vertex Multicut (UVMC)

Edge Multicut (EMC) Restricted Vertex Multicut (RVMC)
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Restricted Vertex Multicut (RVMC)

Definition
Input:

Undirected graph G = (V ,E)

Set of terminals S ⊆ V

Set of pairs of terminals H ⊆ S × S

Integer k ≥ 0

Task: Find a subset V ′ of V with |V ′| ≤ k
that contains no terminal and whose
removal disconnects each pair of H.

Figure: RVMC instance G = (V ,E )
with H = {(1, 3), (3, 4)}, k = 2

1 2 3

4 5 6

Note: No solution for
H = {(1, 3), (1, 6), (3, 4)} !
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Fixed-parameter tractability

Idea

Restrict the seemingly inherent combinatorial explosion of hard
problems to some problem-specific parameters.

n

k

n

k

Definition (fixed-parameter tractable)

Problem P is fixed-parameter tractable
⇐⇒

P is solvable in O(f (k) · nc) time
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RVMC in trees
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RVMC hardness results for trees

Paths: RVMC in trees with maximum vertex degree two is
solvable in polynomial time: O(|V | · |H|).

Trees: NP-completeness has been shown for RVMC in trees
with maximum vertex degree four. [Călinescu et al., Journal
of Algorithms, 2003]

In comparison: Unrestricted Vertex Multicut in trees
can easily be solved in O(|V | · |H|) time (least common
ancestor).
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FPT-algorithm

Theorem

RVMC in trees can be solved in O(2k · |V | · |H|) time, where k is
the number of allowed vertex removals.

FPT-algorithm is based on a depth-bounded search tree



Introduction RVMC in Trees RVMC in Interval Graphs RVMC in General Graphs Conclusion

FPT-algorithm

Theorem

RVMC in trees can be solved in O(2k · |V | · |H|) time, where k is
the number of allowed vertex removals.

FPT-algorithm is based on a depth-bounded search tree
Preprocessing of the instance T = (V ,E ) with S and H:

1

4

2 6 7

5 93 8

1

5

7,6 92, 3,
4

8

Figure: H = {(2, 9), (3, 6), (4, 7)}. Edges with both endpoints being
terminals are contracted.
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FPT-algorithm — search tree

1) Compute the least common ancestor (lca) for each terminal pair
and sort them by decreasing depth in a list L.

lca(    ) lca(    )

lca(    )

1st

2nd

3rd 4th

5th

lca(    )

lca(    )
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FPT-algorithm — search tree

2) While L 6= ∅, consider the first element u of L (least common
ancestor of pair (v ,w)):

v w

u
lca(v, w)

Case 1:
u /∈ S (nonterminal)
→ remove u
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u
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u

u’

lca(v, w)
u = v

w

Case 2a:
u ∈ S , u = v or u = w
→ remove u′ ∈ P
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FPT-algorithm — search tree

2) While L 6= ∅, consider the first element u of L (least common
ancestor of pair (v ,w)):

v w

u
lca(v, w)

Case 1:
u /∈ S (nonterminal)
→ remove u

u

u’

lca(v, w)
u = v

w

Case 2a:
u ∈ S , u = v or u = w
→ remove u′ ∈ P

lca(v, w)

v w

u

v’ w’

v w

u

v’ w’

Case 2b: (branching)
u ∈ S , u 6= v and u 6= w
→ remove u′ or v ′

Termination: If L = ∅ or k nodes have been removed.



Introduction RVMC in Trees RVMC in Interval Graphs RVMC in General Graphs Conclusion

FPT-algorithm — run time
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kdepth

possible solutions

search tree

Depth: parameter k
Size: O(2k )
Update step: O(|V | · |H |) time
→ Run time: O(2k · |V | · |H |)
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RVMC in interval graphs
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Interval graph

A graph is an interval graph if we can label its vertices by
intervals of the real line such that there is an edge between
two vertices if and only if their intervals intersect.

Figure: Example for an interval graph and its corresponding
intervals on the real line.
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Complexity results

Theorem

Restricted Vertex Multicut in interval graphs can be
solved in polynomial time.

→ Dynamic programming algorithm with run time O(|V |2 · |H|2)

UVMC RVMC

Trees P NP-c
Interval graphs NP-c P
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RVMC in general graphs
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Hardness results for general graphs

Restricted Vertex Multicut is NP-complete if there
are at least six terminals. [Dahlhaus et al., SIAM Journal on
Computing, 1994]

There is no FPT-algorithm with respect to the parameter
“number of terminals”.

RVMC is NP-complete for trees with bounded vertex degree
and bounded pathwidth → no FPT-algorithm with path- or
treewidth as parameter.

Idea

A combination of both parameters “number of terminals” and
treewidth leads to an FPT-algorithm.
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FPT-algorithm — basic idea

Key observation: Any solution of RVMC divides the input graph
into at least two connected components → the two terminals of a
terminal pair are in distinct connected components!
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FPT-algorithm — the two stages

Stage one: Enumerate all possible colorings of the terminal set S
with colors C such that for each terminal pair the two terminals
are differently colored (pre-coloring of S).
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FPT-algorithm — the two stages

Stage one: Enumerate all possible colorings of the terminal set S
with colors C such that for each terminal pair the two terminals
are differently colored (pre-coloring of S).

illegal coloring!
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FPT-algorithm — the two stages

Stage two: Extend the legal pre-colorings of stage one with the
previous colors of C plus an additional color (e.g. yellow).
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FPT-algorithm — run time

The color extension can be computed by dynamic
programming on the tree decomposition of the input graph
with treewidth ω.

Theorem

Given an undirected graph G = (V ,E ) with a tree decomposition
of width ω, Restricted Vertex Multicut can be solved in
O(|S ||S |+ω+1 · (|V |+ |E |)) time, where S is the terminal set.

Note: This FPT-algorithm also works for Unrestricted
Vertex Multicut in general graphs.



Introduction RVMC in Trees RVMC in Interval Graphs RVMC in General Graphs Conclusion

Conclusion
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Summary

Graph class Parameter EMC UVMC RVMC

Interval graphs NP-c NP-c P

Trees NP-c P NP-c
k FPT P FPT

General graphs NP-c NP-c NP-c
k open open open
|S | NP-c FPT NP-c
ω NP-c NP-c NP-c
|S | and ω FPT FPT FPT

Table: Complexity of Multicut problems for several graph classes.
|S |: number of terminals, k : number of deletions, ω: treewidth of the
input graph



Introduction RVMC in Trees RVMC in Interval Graphs RVMC in General Graphs Conclusion

Thank you for listening!


