Complexity and Exact Algorithms for Multicut

J. Guo ${ }^{1}$, F. Hüffner ${ }^{1}$, E. Kenar ${ }^{2}$, R. Niedermeier ${ }^{1}$, J. Uhlmann ${ }^{2}$
${ }^{1}$ Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany
${ }^{2}$ Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany

Multicut

Definition

Input:

- Undirected graph $G=(V, E)$
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$

Task: Find a minimum set of edges or vertices whose removal disconnects each pair of H.

Multicut

Definition

Input:

- Undirected graph $G=(V, E)$
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$

Task: Find a minimum set of edges or vertices whose removal disconnects each pair of H.

edge deletion	vertex deletion
Multiterminal Cut (MTC)	Unrestricted Vertex Multicut (UVMC)
Edge Multicut (EMC)	Restricted Vertex Multicut (RVMC)

Restricted Vertex Multicut (RVMC)

Figure: RVMC instance $G=(V, E)$ with $H=\{(1,3),(3,4)\}, k=2$

Definition

Input:

- Undirected graph $G=(V, E)$
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$
- Integer $k \geq 0$

Task: Find a subset V^{\prime} of V with $\left|V^{\prime}\right| \leq k$ that contains no terminal and whose removal disconnects each pair of H.

Restricted Vertex Multicut (RVMC)

Figure: RVMC instance $G=(V, E)$ with $H=\{(1,3),(3,4)\}, k=2$

Definition

Input:

- Undirected graph $G=(V, E)$
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$
- Integer $k \geq 0$

Task: Find a subset V^{\prime} of V with $\left|V^{\prime}\right| \leq k$ that contains no terminal and whose removal disconnects each pair of H.

Restricted Vertex Multicut (RVMC)

Figure: RVMC instance $G=(V, E)$ with $H=\{(1,3),(3,4)\}, k=2$

Definition

Input:

- Undirected graph $G=(V, E)$
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$
- Integer $k \geq 0$

Task: Find a subset V^{\prime} of V with $\left|V^{\prime}\right| \leq k$ that contains no terminal and whose removal disconnects each pair of H.

Restricted Vertex Multicut (RVMC)

Figure: RVMC instance $G=(V, E)$ with $H=\{(1,3),(3,4)\}, k=2$

Definition

Input:

- Undirected graph $G=(V, E)$
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$
- Integer $k \geq 0$

Task: Find a subset V^{\prime} of V with $\left|V^{\prime}\right| \leq k$ that contains no terminal and whose removal disconnects each pair of H.

Note: No solution for $H=\{(1,3),(1,6),(3,4)\}$!

Fixed-parameter tractability

Idea

Restrict the seemingly inherent combinatorial explosion of hard problems to some problem-specific parameters.

Definition (fixed-parameter tractable)

Problem P is fixed-parameter tractable

\square

Fixed-parameter tractability

Idea

Restrict the seemingly inherent combinatorial explosion of hard problems to some problem-specific parameters.

Definition (fixed-parameter tractable)
Problem P is fixed-parameter tractable
P is solvable in $O\left(f(k) \cdot n^{c}\right)$ time

Outline

(1) Introduction
(2) RVMC in Trees

- Complexity Results
- FPT-algorithm: Search Tree
(3) RVMC in Interval Graphs
- Complexity Results

4 RVMC in General Graphs

- Complexity Results
- FPT-algorithm: Coloring Problem
(5) Conclusion

RVMC hardness results for trees

- Paths: RVMC in trees with maximum vertex degree two is solvable in polynomial time: $O(|V| \cdot|H|)$.
- Trees: NP-completeness has been shown for RVMC in trees with maximum vertex degree four. [Călinescu et al., Journal of Algorithms, 2003]
- In comparison: Unrestricted Vertex Multicut in trees can easily be solved in $O(|V| \cdot|H|)$ time (least common ancestor)

RVMC hardness results for trees

- Paths: RVMC in trees with maximum vertex degree two is solvable in polynomial time: $O(|V| \cdot|H|)$.

Theorem

Restricted Vertex Multicut in trees with maximum vertex degree three is NP-complete.

- Trees: NP-completeness has been shown for RVMC in trees with maximum vertex degree four. [Călinescu et al., Journal of Algorithms, 2003]
- In comparison: Unrestricted Vertex Multicut in trees can easily be solved in $O(|V| \cdot|H|)$ time (least common ancestor)

RVMC hardness results for trees

- Paths: RVMC in trees with maximum vertex degree two is solvable in polynomial time: $O(|V| \cdot|H|)$.

Theorem

Restricted Vertex Multicut in trees with maximum vertex degree three is NP-complete.

- Trees: NP-completeness has been shown for RVMC in trees with maximum vertex degree four. [Călinescu et al., Journal of Algorithms, 2003]
- In comparison: Unrestricted Vertex Multicut in trees can easily be solved in $O(|V| \cdot|H|)$ time (least common ancestor).

FPT-algorithm

Theorem

RVMC in trees can be solved in $O\left(2^{k} \cdot|V| \cdot|H|\right)$ time, where k is the number of allowed vertex removals.

- FPT-algorithm is based on a depth-bounded search tree

FPT-algorithm

Theorem

RVMC in trees can be solved in $O\left(2^{k} \cdot|V| \cdot|H|\right)$ time, where k is the number of allowed vertex removals.

- FPT-algorithm is based on a depth-bounded search tree
- Preprocessing of the instance $T=(V, E)$ with S and H :

Figure: $H=\{(2,9),(3,6),(4,7)\}$. Edges with both endpoints being terminals are contracted.

FPT-algorithm - search tree

1) Compute the least common ancestor (Ica) for each terminal pair and sort them by decreasing depth in a list L.

FPT-algorithm - search tree

2) While $L \neq \emptyset$, consider the first element u of L (least common ancestor of pair $(v, w))$:

Case 1:

```
u\not\inS (nonterminal)
    \rightarrow \text { remove u}
```


FPT-algorithm - search tree

2) While $L \neq \emptyset$, consider the first element u of L (least common ancestor of pair $(v, w))$:

Case 1:
$u \notin S$ (nonterminal)
\rightarrow remove u

Case 2a:

$$
\begin{aligned}
u & \in S, u=v \text { or } u=w \\
& \rightarrow \text { remove } u^{\prime} \in P
\end{aligned}
$$

FPT-algorithm - search tree

2) While $L \neq \emptyset$, consider the first element u of L (least common ancestor of pair $(v, w))$:

Case 1:
$u \notin S$ (nonterminal)
\rightarrow remove u

Case 2a:
$u \in S, u=v$ or $u=w$
\rightarrow remove $u^{\prime} \in P$

Case 2b: (branching)
$u \in S, u \neq v$ and $u \neq w$ \rightarrow remove u^{\prime} or v^{\prime}

FPT-algorithm - search tree

2) While $L \neq \emptyset$, consider the first element u of L (least common ancestor of pair $(v, w))$:

Case 1:
$u \notin S$ (nonterminal)
\rightarrow remove u

Case 2a:

$$
\begin{gathered}
u \in S, u=v \text { or } u=w \\
\rightarrow \text { remove } u^{\prime} \in P
\end{gathered}
$$

Case 2b: (branching)
$u \in S, u \neq v$ and $u \neq w$ \rightarrow remove u^{\prime} or v^{\prime}

Termination: If $L=\emptyset$ or k nodes have been removed.

FPT-algorithm - run time

Depth: parameter k Size: $O\left(2^{k}\right)$
Update step: $O(|V| \cdot|H|)$ time \rightarrow Run time: $O\left(2^{k} \cdot|V| \cdot|H|\right)$

RVMC in interval graphs

Interval graph

- A graph is an interval graph if we can label its vertices by intervals of the real line such that there is an edge between two vertices if and only if their intervals intersect.

Figure: Example for an interval graph and its corresponding intervals on the real line.

Complexity results

Theorem

Restricted Vertex Multicut in interval graphs can be solved in polynomial time.
\rightarrow Dynamic programming algorithm with run time $O\left(|V|^{2} \cdot|H|^{2}\right)$

	UVMC	RVMC
Trees	P	NP-c
Interval graphs	NP-c	P

RVMC in general graphs

Hardness results for general graphs

- Restricted Vertex Multicut is NP-complete if there are at least six terminals. [Dahlhaus et al., SIAM Journal on Computing, 1994]
- There is no FPT-algorithm with respect to the parameter "number of terminals".
- RVMC is NP-complete for trees with bounded vertex degree and bounded pathwidth \rightarrow no FPT-algorithm with path- or treewidth as parameter.

A combination of both parameters "number of terminals" and treewidth leads to an FPT-algorithm.

Hardness results for general graphs

- Restricted Vertex Multicut is NP-complete if there are at least six terminals. [Dahlhaus et al., SIAM Journal on Computing, 1994]
- There is no FPT-algorithm with respect to the parameter "number of terminals".
- RVMC is NP-complete for trees with bounded vertex degree and bounded pathwidth \rightarrow no FPT-algorithm with path- or treewidth as parameter.

Idea

A combination of both parameters "number of terminals" and treewidth leads to an FPT-algorithm.

FPT-algorithm — basic idea

Key observation: Any solution of RVMC divides the input graph into at least two connected components \rightarrow the two terminals of a terminal pair are in distinct connected components!

FPT-algorithm — the two stages

Stage one: Enumerate all possible colorings of the terminal set S with colors C such that for each terminal pair the two terminals are differently colored (pre-coloring of S).

FPT-algorithm — the two stages

Stage one: Enumerate all possible colorings of the terminal set S with colors C such that for each terminal pair the two terminals are differently colored (pre-coloring of S).

FPT-algorithm — the two stages

Stage one: Enumerate all possible colorings of the terminal set S with colors C such that for each terminal pair the two terminals are differently colored (pre-coloring of S).

FPT-algorithm — the two stages

Stage two: Extend the legal pre-colorings of stage one with the previous colors of C plus an additional color (e.g. yellow).

FPT-algorithm — the two stages

Stage two: Extend the legal pre-colorings of stage one with the previous colors of C plus an additional color (e.g. yellow).

FPT-algorithm — the two stages

Stage two: Extend the legal pre-colorings of stage one with the previous colors of C plus an additional color (e.g. yellow).

FPT-algorithm - run time

- The color extension can be computed by dynamic programming on the tree decomposition of the input graph with treewidth ω.

Theorem

Given an undirected graph $G=(V, E)$ with a tree decomposition of width ω, Restricted Vertex Multicut can be solved in $O\left(|S|^{|S|+\omega+1} \cdot(|V|+|E|)\right)$ time, where S is the terminal set.

- Note: This FPT-algorithm also works for UnRestricted Vertex Multicut in general graphs.

Conclusion

Summary

Graph class	Parameter	EMC	UVMC	RVMC
Interval graphs		NP-c	NP-c	P
Trees				
			NP-c	P
General graphs		NP-c		
	k		NP-c	NP-c
			NP-c	
	$\|S\|$	open	open	open
	ω	NP-c	FPT	NP-c
	$\|S\|$ and ω	FPT	FPT	NP-c
		FPT	FPT	

Table: Complexity of Multicut problems for several graph classes. $|S|$: number of terminals, k : number of deletions, ω : treewidth of the input graph

Thank you for listening!

