Introduction	RVMC in Trees	RVMC in Interval Graphs	RVMC in General Graphs	Conclusion

Complexity and Exact Algorithms for MULTICUT

J. Guo¹, F. Hüffner¹, E. Kenar², R. Niedermeier¹, J. Uhlmann²

¹Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

²Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany

SOFSEM 2006

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Introduction	RVMC in Trees 00000	RVMC in Interval Graphs 00	RVMC in General Graphs 0000000	Conclusion
Multicut				

Definition

Input:

- Undirected graph G = (V, E)
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$

Task: Find a minimum set of edges or vertices whose removal disconnects each pair of H.

edge deletion	vertex deletion
	Unrestricted Vertex Multicut (UVMC)
Edge Multicut (EMC)	Restricted Vertex Multicut (RVMC)

Introduction	RVMC in Trees 00000	RVMC in Interval Graphs 00	RVMC in General Graphs 0000000	Conclusion
Multicut				

Definition

Input:

- Undirected graph G = (V, E)
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$

Task: Find a minimum set of edges or vertices whose removal disconnects each pair of H.

edge deletion	vertex deletion
Multiterminal Cut (MTC)	Unrestricted Vertex Multicut (UVMC)
Edge Multicut (EMC)	Restricted Vertex Multicut (RVMC)

Introduction RVMC in Trees RVMC in Interval Graphs 00000 00

RVMC in General Graphs

Conclusion

Restricted Vertex Multicut (RVMC)

Definition

Input:

- Undirected graph G = (V, E)
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$
- Integer $k \ge 0$

Task: Find a subset V' of V with $|V'| \le k$ that contains **no terminal** and whose removal disconnects each pair of H.

Figure: RVMC instance G = (V, E)with $H = \{(1, 3), (3, 4)\}, k = 2$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへ⊙

Introduction RVMC in Trees RVMC in Interval Graphs 00000 00 RVMC in General Graphs

Conclusion

Restricted Vertex Multicut (RVMC)

Definition

Input:

- Undirected graph G = (V, E)
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$
- Integer $k \ge 0$

Task: Find a subset V' of V with $|V'| \le k$ that contains **no terminal** and whose removal disconnects each pair of H.

Figure: RVMC instance G = (V, E)with $H = \{(1, 3), (3, 4)\}, k = 2$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへ⊙

Introduction RVMC in Trees RVMC in Interval Graphs

RVMC in General Graphs

Conclusion

Restricted Vertex Multicut (RVMC)

Definition

Input:

- Undirected graph G = (V, E)
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$
- Integer $k \ge 0$

Task: Find a subset V' of V with $|V'| \le k$ that contains **no terminal** and whose removal disconnects each pair of H.

Figure: RVMC instance G = (V, E)with $H = \{(1, 3), (3, 4)\}, k = 2$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへ⊙

Introduction RVMC in Trees RVMC in Interval Graphs

RVMC in General Graphs

Conclusion

Restricted Vertex Multicut (RVMC)

Definition

Input:

- Undirected graph G = (V, E)
- Set of terminals $S \subseteq V$
- Set of pairs of terminals $H \subseteq S \times S$
- Integer $k \ge 0$

Task: Find a subset V' of V with $|V'| \le k$ that contains **no terminal** and whose removal disconnects each pair of H.

Figure: RVMC instance G = (V, E)with $H = \{(1, 3), (3, 4)\}, k = 2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Note: No solution for $H = \{(1,3), (1,6), (3,4)\} !$

Introduction	RVMC in Trees 00000	RVMC in Interval Graphs 00	RVMC in General Graphs	Conclusion
Fixed-pai	rameter trac	tability		

Idea

Restrict the seemingly inherent combinatorial explosion of hard problems to some problem-specific parameters.

Definition (fixed-parameter tractable) Problem P is fixed-parameter tractable \iff P is solvable in $O(f(k) \cdot n^c)$ time

<ロ> (四) (四) (三) (三) (三) (三)

Introduction	RVMC in Trees 00000	RVMC in Interval Graphs 00	RVMC in General Graphs 0000000	Conclusion
Fixed-pa	rameter trac	tability		

Idea

Restrict the seemingly inherent combinatorial explosion of hard problems to some problem-specific parameters.

Definition (fixed-parameter tractable)Problem P is fixed-parameter tractable \iff P is solvable in $O(f(k) \cdot n^c)$ time

3

Introduction	RVMC in Trees	RVMC in Interval Graphs 00	RVMC in General Graphs 0000000	Conclusion
Outline				

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

2 RVMC in Trees

- Complexity Results
- FPT-algorithm: Search Tree
- RVMC in Interval Graphs
 Complexity Results
- 4 RVMC in General Graphs
 - Complexity Results
 - FPT-algorithm: Coloring Problem

5 Conclusion

Introduction	RVMC in Trees	RVMC in Interval Graphs	RVMC in General Graphs	Conclusion

RVMC in trees

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Paths: RVMC in trees with maximum vertex degree two is solvable in polynomial time: $O(|V| \cdot |H|)$.

- Trees: NP-completeness has been shown for RVMC in trees with maximum vertex degree four. [Călinescu et al., Journal of Algorithms, 2003]
- In comparison: UNRESTRICTED VERTEX MULTICUT in trees can easily be solved in $O(|V| \cdot |H|)$ time (least common ancestor).

• Paths: RVMC in trees with maximum vertex degree two is solvable in polynomial time: $O(|V| \cdot |H|)$.

Theorem

 $\label{eq:Restricted Vertex Multicut in trees with maximum vertex \\ \ensuremath{\text{degree three}}\xspace$ is NP-complete.

- Trees: NP-completeness has been shown for RVMC in trees with maximum **vertex degree four**. [Călinescu et al., Journal of Algorithms, 2003]
- In comparison: UNRESTRICTED VERTEX MULTICUT in trees can easily be solved in $O(|V| \cdot |H|)$ time (least common ancestor).

• Paths: RVMC in trees with maximum vertex degree two is solvable in polynomial time: $O(|V| \cdot |H|)$.

Theorem

 $\label{eq:Restricted Vertex Multicut in trees with maximum vertex \\ \ensuremath{\text{degree three}}\xspace$ is NP-complete.

- Trees: NP-completeness has been shown for RVMC in trees with maximum **vertex degree four**. [Călinescu et al., Journal of Algorithms, 2003]
- In comparison: UNRESTRICTED VERTEX MULTICUT in trees can easily be solved in $O(|V| \cdot |H|)$ time (least common ancestor).

Introduction	RVMC in Trees ○●000	RVMC in Interval Graphs 00	RVMC in General Graphs 0000000	Conclusion
FPT-ale	orithm			

Theorem

RVMC in trees can be solved in $O(2^k \cdot |V| \cdot |H|)$ time, where k is the number of allowed vertex removals.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ● ◇◇◇

• FPT-algorithm is based on a depth-bounded search tree

Introduction	RVMC in Trees ○●000	RVMC in Interval Graphs 00	RVMC in General Graphs 0000000	Conclusion
FPT-ale	orithm			

Theorem

o

RVMC in trees can be solved in $O(2^k \cdot |V| \cdot |H|)$ time, where k is the number of allowed vertex removals.

- FPT-algorithm is based on a depth-bounded search tree
- Preprocessing of the instance T = (V, E) with S and H:

Figure: $H = \{(2,9), (3,6), (4,7)\}$. Edges with both endpoints being terminals are contracted.

1) Compute the least common ancestor (lca) for each terminal pair and sort them by decreasing depth in a list L.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

Case 1: $u \notin S$ (nonterminal) \rightarrow remove u

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

<日 > < 同 > < 目 > < 日 > < 同 > < 日 > < 日 > < 日 > < 0 < 0</p>

Termination: If $L = \emptyset$ or k nodes have been removed.

Depth: parameter k Size: $O(2^k)$ Update step: $O(|V| \cdot |H|)$ time \rightarrow Run time: $O(2^k \cdot |V| \cdot |H|)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Introduction	RVMC in Trees	RVMC in Interval Graphs	RVMC in General Graphs	Conclusion

RVMC in interval graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	RVMC in Trees 00000	RVMC in Interval Graphs ●○	RVMC in General Graphs 0000000	Conclusion
Interval	graph			

• A graph is an *interval graph* if we can label its vertices by intervals of the real line such that there is an edge between two vertices if and only if their intervals intersect.

Figure: Example for an interval graph and its corresponding intervals on the real line.

Introduction	RVMC in Trees	RVMC in Interval Graphs ⊙●	RVMC in General Graphs 0000000	Conclusion
Complex	vity results			

Theorem

 ${\rm Restricted}\ {\rm Vertex}\ {\rm Multicut}$ in interval graphs can be solved in polynomial time.

 \rightarrow Dynamic programming algorithm with run time $\mathcal{O}(|V|^2 \cdot |H|^2)$

	UVMC	RVMC
Trees	Р	NP-c
Interval graphs	NP-c	Р

◆□> ◆□> ◆三> ◆三> ・三 のへで

Introduction	RVMC in Trees	RVMC in Interval Graphs	RVMC in General Graphs	Conclusi

RVMC in general graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- RESTRICTED VERTEX MULTICUT is NP-complete if there are at least six terminals. [Dahlhaus et al., SIAM Journal on Computing, 1994]
- There is **no** FPT-algorithm with respect to the parameter "number of terminals".
- RVMC is NP-complete for trees with bounded vertex degree and bounded pathwidth → no FPT-algorithm with path- or treewidth as parameter.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

ldea

A combination of both parameters "number of terminals" and treewidth leads to an FPT-algorithm.

- RESTRICTED VERTEX MULTICUT is NP-complete if there are at least six terminals. [Dahlhaus et al., SIAM Journal on Computing, 1994]
- There is **no** FPT-algorithm with respect to the parameter "number of terminals".
- RVMC is NP-complete for trees with bounded vertex degree and bounded pathwidth → no FPT-algorithm with path- or treewidth as parameter.

Idea

A combination of both parameters "number of terminals" and treewidth leads to an FPT-algorithm.

Introduction	RVMC in Trees 00000	RVMC in Interval Graphs 00	RVMC in General Graphs ○●00000	Conclusion
FPT-alg	orithm — b	oasic idea		

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Introduction	RVMC in Trees	RVMC in Interval Graphs 00	RVMC in General Graphs ○○●○○○○	Conclusion
FPT-algo	orithm — b	asic idea		

Key observation: Any solution of RVMC divides the input graph into at least two connected components \rightarrow the two terminals of a terminal pair are in distinct connected components!

Stage one: Enumerate all possible colorings of the terminal set S with colors C such that for each terminal pair the two terminals are differently colored (*pre-coloring* of S).

Stage one: Enumerate all possible colorings of the terminal set S with colors C such that for each terminal pair the two terminals are differently colored (*pre-coloring* of S).

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = つへぐ

Stage one: Enumerate all possible colorings of the terminal set S with colors C such that for each terminal pair the two terminals are differently colored (*pre-coloring* of S).

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = つへぐ

Stage two: Extend the legal pre-colorings of stage one with the previous colors of *C* **plus** an additional color (e.g. *yellow*).

Stage two: Extend the legal pre-colorings of stage one with the previous colors of *C* **plus** an additional color (e.g. *yellow*).

Stage two: Extend the legal pre-colorings of stage one with the previous colors of *C* **plus** an additional color (e.g. *yellow*).

 The color extension can be computed by dynamic programming on the tree decomposition of the input graph with *treewidth* ω.

Theorem

Given an undirected graph G = (V, E) with a tree decomposition of width ω , RESTRICTED VERTEX MULTICUT can be solved in $O(|S|^{|S|+\omega+1} \cdot (|V|+|E|))$ time, where S is the terminal set.

• Note: This FPT-algorithm also works for UNRESTRICTED VERTEX MULTICUT in general graphs.

Introduction	RVMC in Trees	RVMC in Interval Graphs	RVMC in General Graphs	Conclusion

Conclusion

Introduction	RVMC in Trees	RVMC in Interval Graphs	RVMC in General Graphs 0000000	Conclusion
Summar	V			

Graph class	Parameter	EMC	UVMC	RVMC
Interval graphs		NP-c	NP-c	Ρ
Trees		NP-c	Ρ	NP-c
	k	FPT	Р	FPT
General graphs		NP-c	NP-c	NP-c
	k	open	open	open
	S	NP-c	FPT	NP-c
	ω	NP-c	NP-c	NP-c
	$ {\cal S} $ and ω	FPT	FPT	FPT

Table: Complexity of MULTICUT problems for several graph classes. |S|: number of terminals, k: number of deletions, ω : treewidth of the input graph

Introduction	RVMC in Trees	RVMC in Interval Graphs	RVMC in General Graphs	Conclusion
	00000	00	000000	

Thank you for listening!