
Semi-Strong Static Type Checking
of Object-Oriented Query Languages

Michał Lentner#, Krzysztof Stencel*, Kazimierz Subieta#

Polish-Japanese Institute of Information Technology, Poland (m.lentner@pjwstk.edu.pl, subieta@pjwstk.edu.pl)
* University of Warsaw, Poland (stencel@mimuw.edu.pl)

mailto:m.lentner@pjwstk.edu.pl
mailto:m.lentner@pjwstk.edu.pl
mailto:subieta@pjwstk.edu.pl
mailto:subieta@pjwstk.edu.pl
mailto:subieta@pjwstk.edu.pl
mailto:subieta@pjwstk.edu.pl

Motivations

• There are features of query/programming languages and environments that
make implementation of types extremely difficult. Among them are such
notions as: mutability, collection cardinality constraints, collection kinds,
single-, multi- and dynamic inheritance, modules, export/import lists,
auxilliary names in queries, etc.
Many type systems do not support these complex structures.

• Queries and: irregularities in data structures (null values, repeating data,
variants/unions, unconstrained data names), ellipses and coercions, etc.
Strong type checking should be relaxed to be efficient for programmers.

• Major issues in typing systems are not theoretical, but practical.
They are concerned with development of solutions that meet the typical
programmers’ psychology.
Theories are good guidelines, but eventually must be corrected by practical
considerations.

• Everything in the area of type systems has already been done?
If it is so good in theory, why is it so bad in practice?

Runtime Query Evaluation!"#$%#&'()*(+*,-,./$#01*2%,01*!"#$%&''()*'+'(,-"'./012"34*/-56(2-$-+&789999*

'3*/0,3,)&,4*5,0,*')*&,0.3*(+*'&3*(/,0#&'()*()*,)"'0().,)&*2%,01*0,3%$&*#)4*3ᩒ*

*

*
*

and so on...

!"#$%"##&'($)*#+$,'$(-&$#&.&/#%-$0,&12$,'%1"2&.$(-&$2&3&1*45&'($*0$(-&$!678$9!:;

<&%($6/(/:/.&$0*#$7/4,2$8441,%/(,*'$2&3&1*45&'(=$.>.(&5?$%"##&'(1>$2&/1,'@$),(-$2/(/$

2,.(#,:"(,*'?$ "42/(/:1&$ 3,#("/1$ 3,&).?$ (>4&$ %-&%+,'@$ /'2$5&(/2/(/$5/'/@&5&'(?$ /'2$

*00&#,'@$ /$.,'@1&$ 4#/@5/(,%/11>$ %*541&(&$ 4#*@#/55,'@$ 1/'@"/@&$ ABCD$),(-$ 0"11$

E"&#>$1/'@"/@&$%/4/:,1,(,&.F$

G"#(-&#$".&$*0$ (-&$4#&.&'(&2$ 0#/5&)*#+$,'$ (&/%-,'@$),11$,'%1"2&$ (-&$,541&5&'(/;

(,*'$ /'2$ ".&$ *0$ %-*.&'$ 6BHA$ %*'.(#"%(.$,'3&.(,@/(&2$),(-$ (-&$!678$ 4#*(*(>4&F$

ABCD$,.$,'(&'2&2$(*$:&$(-&$5&/'$0*#$%#&/(,'@$%*541&(&$/441,%/(,*'.F$I.&0"1$0"'%(,*';

/1,(>$*00&#&2$:>$@&'&#/1;4"#4*.&$4#*@#/55,'@$1/'@"/@&.$9&F@F$J/3/=$,.$(*$:&$/3/,1/:1&$

(-#*"@-$/$@&'&#,%$'/(,3&$,'(�/%&F$

!"#"$"%&"'(

KF! 8FLF$844&1?$JF$M/1.:&#@N$H*2&#'$O*54,1&#$P541&5&'(/(,*'$,'$J/3/F$O/5:#,2@&$I',3&#.,(>$

M#&..$QRRQF$

QF! 7FSFSF$ O/((&11?$ 6FTF$ B/##>N$ U-&$!:<&%($ 6/(/$ A(/'2/#2N$!6HS$ VFRF$H*#@/'$ T/"05/''$

QRRRF$

VF! WF$S/55/?$7F$X&15?$7F$J*-'.*'?$JF$Y1,..,2&.N$6&.,@'$M/((&#'.N$W1&5&'(.$*0$7&"./:1&$!:;

<&%(;!#,&'(&2$A*0()/#&F$822,.*';L&.1&>$KZZ[F$

\F! A":,&(/?$TF?$T/5:/>/.-,?$]F?$D&.^%^>!*).+,?JFNM#*%&2"#&.$,'$!:<&%(;!#,&'(&2$C"&#>$D/';

@"/@&.F$M#*%F$*0$YD6B$O*'0F$9KZZ[=$K_Q;KZV$

[F! TF$A":,&(/?$OF$B&&#,?$GF$H/((-&.?$JFLFA%-5,2(F8A(/%+;B/.&2$844#*/%-$(*$C"&#>$D/';

@"/@&.$M#*%F$*0$Q'2$W/.(;L&.($6/(/:/.&$L*#+.-*4?$KZZ\?$A4#,'@&#$L*#+.-*4.$,'$O*54"(;

,'@?$KZZ[F$

`F! TF$A":,&(/F$U-&*#>$/'2$O*'.(#"%(,*'$*0$!:<&%(;!#,&'(&2$C"&#>$D/'@"/@&.F$W2,(*#.$*0$ (-&$

M*1,.-;J/4/'&.&$P'.(,("(&$*0$P'0*#5/(,*'$U&%-'*1*@>?$QRR\?$[QQ$4/@&.?$PABa$_V;_ZQ\\;Q_;

\$9,'$M*1,.-=F$

bF! L*#12$L,2&$L&:$O*'.*#(,"5$9LV=NcHDC"&#>$.4&%,0,%/(,*'.F$

-((4Ndd)))F)VF*#@dcHDdC"&#>d$

_F! L*#12$L,2&$L&:$O*'.*#(,"5$9LV=NcHDC"&#>$I.&$O/.&.FLVOL*#+,'@$6#/0($K[$A&4;

(&5:&#$QRR[$-((4Ndd)))F)VF*#@dU7deE"&#>;".&;%/.&.d$$

)**"%+,-(.(/0"$1("234035,6%("-37*4"(

U-&$&e/541&$,11".(#/(&.$E"&#>$&3/1"/(,*'$,'3*+&2$/@/,'.($/$2/(/:/.&$*0$(-&$%*'(&'(.$#&4#&.&'(&2$

:>$(-&$0*11*),'@$(#&&$*0$*:<&%(.N$

$
$

Employee where Name =
“J. Smith” and Salary > 10000

Our approach to type checking
• Runtime structures of SBA:

• Data Store
Represents objects stored in the database.

• Environment Stack
Responsible for name binding, enforcing scope rules,
supporting non-algebraic operators, procedure calls, etc.

• Query Result Stack
Responsible for storing temporary and final query results.

• Compile-time structures:

• Metabase
Represents the database schema.

• Static Environment Stack
Responsible for name binding, enforcing scope rules,
supporting non-algebraic operators, procedure calls, etc.

• Static Query Result Stack
Responsible for storing temporary and final signatures.

• Type inference tables
Information about operators, signatures of arguments, and signatures of results.

4 Static Type Checking

The general architecture of the type checker is presented in Fig.3. Shaded shapes are

program modules, while dashed lines surround data structures which are used and

created by the modules. The query parser takes a query as a text supplied by a client

and compiles it to produce an abstract syntax tree of the query. This syntax tree is

analysed, decorated and sometimes modified by the type checker. If the type checking

is successful (the query is correct), the query is executed by the query engine. The

query engine operates on two stacks and on the data store.

QRE

S

QRES

ENVS

Object store

Query engine Type checker

Static stack

S_ENVS

Static stack

S_QRES

Metabase

Abstract syntax tree of the query

Query parser client
a query

Fig. 3 The general architecture of the type checker

Analogously, the type checker which is to simulate the execution of the query op-

erates on corresponding static structures (the static environment stack S_ENVS, the

static result stack S_QRES and the metabase). The type checker uses the information

known during the parsing and does not retrieve any information from the data store.

The static stacks contain, in particular, signatures of objects from the data store. The

type checker processes the signatures exactly in the same way as the query engine

could later process the concrete object from the data store, if they were not optimized.

The procedure static_type_check is the heart of the type checker and operates on

the syntactic tree of a query, both static stacks and the metabase. This procedure is an

abstract implementation of our type checker. It performs the computation on signa-

tures just as if they were actual data. During the signature computation, the procedure

accomplishes the following actions:

• Checks the type correctness of the syntactic tree of a query by simulating the

execution of this query on the static stacks S_ENVS and S_QRES.

• Generates messages on type errors.

Database Schema and Metabase
number of them. If the number of described objects is unlimited, j has the value *.

Cardinalities 0..0 and 1..1 will be written 0 and 1, and 0..* will be written as *.

There could be other attributes of the node, in particular, mutability (perhaps, sub-

divided into update-ability, insert-ability, delete-ability), a collection kind (bag, se-

quence, array, etc.), type name (if one would like to assume type equivalence based

on type names, as e.g. in Pascal), and perhaps others. For simplicity of presentation in

this paper we omit them, but they can be easily involved into type inference decision

tables and then introduced in implementation.

Edges in the metabase are of three kinds: (1) an ownership which connects subob-

jects with their owner, (2) the range of a link object and (3) the inheritance.

name: works_in

kind: link

card: 1

name: Person

kind: class

card: *

name: name

kind: object

type: string

card: 1

name: Emp

kind: class

card: *

name: Dept

kind: class

card: *

name: sal

kind: object

type: int

card: 0..1

name: empno

kind: object

type: int

card: 1

name: job

kind: object

type: string

card: 1

name: loc

kind: object

type: string

card: 0..1

name: name

kind: object

type: string

card: 1

name: changeName

kind: method

type: string ! void

name: changeSal

kind: method

type: int ! void

name: manages

kind: link

card: 0..1

name: employs

kind: link

card: 1..*

name: boss

kind: link

card: 1

Fig. 2 An example metabase graph

In Fig.2 we distinguish (1) and (2) edge kinds by the attribute kind. Note that as-

suming some predefined (the same) name for all nodes, the metabase can be easily

represented as an object store built according to the store model. In this way the me-

tabase can be queried through SBQL.

Signatures

S - set of signatures, SC - set of signature components

• Names of atomic types (e.g. integer, real, etc.) ∈ SC

• Static identifiers of the metabase graph nodes ∈ SC

• Static binders: pairs name(s) ∈ SC, where s ∈ S

• Static structures: { s1, s2, ... } ∈ SC, where s1, s2, ... ∈ S

• ∀(s ∈ SC) s[c]o ∈ S , where:

c - cardinality ([0..1], [1..1], [0..*], [1..*], etc.),
o - ordering (bag or sequence)

Type Inference Decision Tables

q1 q2 q1 + q2

int[1..1]bag int[1..1]bag int[1..1]bag

int[1..1]bag real[1..1]bag real[1..1]bag

int[x..y]bag, x != 1 or y != 1 int[x..y]bag, x != 1 or y != 1 type error

...

q1 q2 q1 union q2

T[a..b]bag T[x..y]bag T[a + x ... b + y]bag

...

q1 q2 q1.q2

T1[a..b]bag T2[x..y]bag T2[a * x ... b * y]bag

...

q1 q2 q1 where q2

T[x..y]bag bool[1..1]bag T[0..y]bag

...

Addition

Union

Projection

Selection

etc...

Static Type Checking

The type checker simulates runtime query evaluation using the metabase, the
static environment stack, the query result stack and type inference decision
tables. It performs the computation on signatures just as if they were actual data.
It also:

• Checks names used in the query

• Generates messages on type errors

• Restores the process of type checking after a type error has been
encountered

• Augments the syntactic tree with new nodes in order to resolve ellipses

• Augments the syntactic tree with dynamic type checks, if the type
correctness cannot be asserted statically

T h a n k y o u !

More information about SBA:
http://www.ipipan.waw.pl/~subieta/

http://www.ipipan.waw.pl/~subieta
http://www.ipipan.waw.pl/~subieta

