
Merging and Merge-sort in a Single
Hop Radio Network

Marcin Kik
Wrocław University of Technology

Poland
SOFSEM 2006

Merging and Merge-sort in a Single Hop Radio Network – p.1/31

Model of computation
Radio network:

n stations communicating by radio messages

single-hop
synchronized (time is slotted)
in a one slot at most one message (in single channel)
single message contains O(lg n) bits
broadcasting/listening to a single message requires unit
of energetic cost
memory of single station limited to constant number of
words of O(lg n) bits

Energetic cost of the algorithm is the maximal energy
dissipated by a single station.

Merging and Merge-sort in a Single Hop Radio Network – p.2/31

Model of computation
Radio network:

n stations communicating by radio messages
single-hop

synchronized (time is slotted)
in a one slot at most one message (in single channel)
single message contains O(lg n) bits
broadcasting/listening to a single message requires unit
of energetic cost
memory of single station limited to constant number of
words of O(lg n) bits

Energetic cost of the algorithm is the maximal energy
dissipated by a single station.

Merging and Merge-sort in a Single Hop Radio Network – p.2/31

Model of computation
Radio network:

n stations communicating by radio messages
single-hop
synchronized (time is slotted)

in a one slot at most one message (in single channel)
single message contains O(lg n) bits
broadcasting/listening to a single message requires unit
of energetic cost
memory of single station limited to constant number of
words of O(lg n) bits

Energetic cost of the algorithm is the maximal energy
dissipated by a single station.

Merging and Merge-sort in a Single Hop Radio Network – p.2/31

Model of computation
Radio network:

n stations communicating by radio messages
single-hop
synchronized (time is slotted)
in a one slot at most one message (in single channel)

single message contains O(lg n) bits
broadcasting/listening to a single message requires unit
of energetic cost
memory of single station limited to constant number of
words of O(lg n) bits

Energetic cost of the algorithm is the maximal energy
dissipated by a single station.

Merging and Merge-sort in a Single Hop Radio Network – p.2/31

Model of computation
Radio network:

n stations communicating by radio messages
single-hop
synchronized (time is slotted)
in a one slot at most one message (in single channel)
single message contains O(lg n) bits

broadcasting/listening to a single message requires unit
of energetic cost
memory of single station limited to constant number of
words of O(lg n) bits

Energetic cost of the algorithm is the maximal energy
dissipated by a single station.

Merging and Merge-sort in a Single Hop Radio Network – p.2/31

Model of computation
Radio network:

n stations communicating by radio messages
single-hop
synchronized (time is slotted)
in a one slot at most one message (in single channel)
single message contains O(lg n) bits
broadcasting/listening to a single message requires unit
of energetic cost

memory of single station limited to constant number of
words of O(lg n) bits

Energetic cost of the algorithm is the maximal energy
dissipated by a single station.

Merging and Merge-sort in a Single Hop Radio Network – p.2/31

Model of computation
Radio network:

n stations communicating by radio messages
single-hop
synchronized (time is slotted)
in a one slot at most one message (in single channel)
single message contains O(lg n) bits
broadcasting/listening to a single message requires unit
of energetic cost
memory of single station limited to constant number of
words of O(lg n) bits

Energetic cost of the algorithm is the maximal energy
dissipated by a single station.

Merging and Merge-sort in a Single Hop Radio Network – p.2/31

Model of computation
Radio network:

n stations communicating by radio messages
single-hop
synchronized (time is slotted)
in a one slot at most one message (in single channel)
single message contains O(lg n) bits
broadcasting/listening to a single message requires unit
of energetic cost
memory of single station limited to constant number of
words of O(lg n) bits

Energetic cost of the algorithm is the maximal energy
dissipated by a single station.

Merging and Merge-sort in a Single Hop Radio Network – p.2/31

Statement of the sorting problem
We have n enumerated stations a1 . . . an.

Each ai stores a single key in its local variable key[ai].

We want to rearrange the keys between the stations so
that finally the sequence key[a1], . . . , key[an] is sorted.

We assume that single key can be sent in a single
message.

Merging and Merge-sort in a Single Hop Radio Network – p.3/31

Statement of the sorting problem
We have n enumerated stations a1 . . . an.
Each ai stores a single key in its local variable key[ai].

We want to rearrange the keys between the stations so
that finally the sequence key[a1], . . . , key[an] is sorted.

We assume that single key can be sent in a single
message.

Merging and Merge-sort in a Single Hop Radio Network – p.3/31

Statement of the sorting problem
We have n enumerated stations a1 . . . an.
Each ai stores a single key in its local variable key[ai].
We want to rearrange the keys between the stations so
that finally the sequence key[a1], . . . , key[an] is sorted.

We assume that single key can be sent in a single
message.

Merging and Merge-sort in a Single Hop Radio Network – p.3/31

Statement of the sorting problem
We have n enumerated stations a1 . . . an.
Each ai stores a single key in its local variable key[ai].
We want to rearrange the keys between the stations so
that finally the sequence key[a1], . . . , key[an] is sorted.

We assume that single key can be sent in a single
message.

Merging and Merge-sort in a Single Hop Radio Network – p.3/31

Sorting on single hop:
From comparator networks: (each comparator simulated in two slots)

AKS energy: Θ(lg n), time: Θ(n lg n)

Batcher energy: ≈ lg2
n, time: Θ(n lg2

n)

Singh, Prasanna – energy: Θ(lg n), time: Θ(n lg n)

(Quick-sort with energetically balanced selection)

In this paper:
practical Merge-sort
energy: 1

2
lg2

n + 7

2
lg n (improved: 1

2
lg2

n + 3

2
lg n + 2) ,

time: 2n · lg n (improved: n lg n + n) .
(Merging two sequences of length m

energy: dlg(m + 1)e+ 3, time 4m.)
Merge-sort – energy: O(lg n lg∗ n), time: O(n lg n lg∗ n)

(Merging – energy: O(lg∗ m), time O(m lg∗ m)).

Merging and Merge-sort in a Single Hop Radio Network – p.4/31

Sorting on single hop:
From comparator networks: (each comparator simulated in two slots)

AKS energy: Θ(lg n), time: Θ(n lg n)

Batcher energy: ≈ lg2
n, time: Θ(n lg2

n)

Singh, Prasanna – energy: Θ(lg n), time: Θ(n lg n)

(Quick-sort with energetically balanced selection)

In this paper:
practical Merge-sort
energy: 1

2
lg2

n + 7

2
lg n (improved: 1

2
lg2

n + 3

2
lg n + 2) ,

time: 2n · lg n (improved: n lg n + n) .
(Merging two sequences of length m

energy: dlg(m + 1)e+ 3, time 4m.)
Merge-sort – energy: O(lg n lg∗ n), time: O(n lg n lg∗ n)

(Merging – energy: O(lg∗ m), time O(m lg∗ m)).

Merging and Merge-sort in a Single Hop Radio Network – p.4/31

Sorting on single hop:
From comparator networks: (each comparator simulated in two slots)

AKS energy: Θ(lg n), time: Θ(n lg n)

Batcher energy: ≈ lg2
n, time: Θ(n lg2

n)

Singh, Prasanna – energy: Θ(lg n), time: Θ(n lg n)

(Quick-sort with energetically balanced selection)

In this paper:
practical Merge-sort
energy: 1

2
lg2

n + 7

2
lg n

(improved: 1

2
lg2

n + 3

2
lg n + 2)

,
time: 2n · lg n

(improved: n lg n + n)

.
(Merging two sequences of length m

energy: dlg(m + 1)e+ 3, time 4m.)

Merge-sort – energy: O(lg n lg∗ n), time: O(n lg n lg∗ n)

(Merging – energy: O(lg∗ m), time O(m lg∗ m)).

Merging and Merge-sort in a Single Hop Radio Network – p.4/31

Sorting on single hop:
From comparator networks: (each comparator simulated in two slots)

AKS energy: Θ(lg n), time: Θ(n lg n)

Batcher energy: ≈ lg2
n, time: Θ(n lg2

n)

Singh, Prasanna – energy: Θ(lg n), time: Θ(n lg n)

(Quick-sort with energetically balanced selection)

In this paper:
practical Merge-sort
energy: 1

2
lg2

n + 7

2
lg n

(improved: 1

2
lg2

n + 3

2
lg n + 2)

,
time: 2n · lg n

(improved: n lg n + n)

.
(Merging two sequences of length m

energy: dlg(m + 1)e+ 3, time 4m.)
Merge-sort – energy: O(lg n lg∗ n), time: O(n lg n lg∗ n)

(Merging – energy: O(lg∗ m), time O(m lg∗ m)).

Merging and Merge-sort in a Single Hop Radio Network – p.4/31

Sorting on single hop:
From comparator networks: (each comparator simulated in two slots)

AKS energy: Θ(lg n), time: Θ(n lg n)

Batcher energy: ≈ lg2
n, time: Θ(n lg2

n)

Singh, Prasanna – energy: Θ(lg n), time: Θ(n lg n)

(Quick-sort with energetically balanced selection)

In this paper:
practical Merge-sort
energy: 1

2
lg2

n + 7

2
lg n (improved: 1

2
lg2

n + 3

2
lg n + 2) ,

time: 2n · lg n (improved: n lg n + n) .
(Merging two sequences of length m

energy: dlg(m + 1)e+ 3, time 4m.)
Merge-sort – energy: O(lg n lg∗ n), time: O(n lg n lg∗ n)

(Merging – energy: O(lg∗ m), time O(m lg∗ m)).

Merging and Merge-sort in a Single Hop Radio Network – p.4/31

Merging?
What is the optimal energetic cost of merging?

If we simulate the simple sequential algorithm, then the total energy for
broadcasting and listening is O(n), but it is not balanced.

Merging and Merge-sort in a Single Hop Radio Network – p.5/31

Merging?
What is the optimal energetic cost of merging?
If we simulate the simple sequential algorithm, then the total energy for
broadcasting and listening is O(n), but it is not balanced.

Merging and Merge-sort in a Single Hop Radio Network – p.5/31

Ranking

Ranking of a1. . . am in b1. . . bm:
a1. . . am – sorted
b1. . . bm – sorted
(balanced binary tree Tm)
all values distinct
in-order indexes
"preorder" indexes – slots
ranks
timers – slots

1 1 1 1 1 10 0 0 0 0 0
1a 2a 3a 4a 5a 6a

1b

2b

3b

4

5b

b 6
1

3

654
2

b

Merging and Merge-sort in a Single Hop Radio Network – p.6/31

Ranking

Ranking of a1. . . am in b1. . . bm:
a1. . . am – sorted
b1. . . bm – sorted
(balanced binary tree Tm)
all values distinct
in-order indexes
"preorder" indexes – slots
ranks
timers – slots

1 1 1 1 1 10 0 0 0 0 0
1a 2a 3a 4a 5a 6a

0 0 0 0 4 41 2 2 2 2 3 3

1b

2b

3b

4

5b

b 6
1

3

654
2

b

Merging and Merge-sort in a Single Hop Radio Network – p.7/31

Ranking

Ranking of a1. . . am in b1. . . bm:
a1. . . am – sorted
b1. . . bm – sorted
(balanced binary tree Tm)
all values distinct
in-order indexes
"preorder" indexes – slots
ranks
timers – slots

1 1 1 1 1 10 0 0 0 0 0
1a 2a 3a 4a 5a 6a

0 0 0 0 4 41
2 0 0 0 2 4 4

2 2 2 2 3 3
4 4 4 5 3 3

1b

2b

3b

4

5b

b 6
1

3

654
2

b

Merging and Merge-sort in a Single Hop Radio Network – p.8/31

Ranking

Ranking of a1. . . am in b1. . . bm:
a1. . . am – sorted
b1. . . bm – sorted
(balanced binary tree Tm)
all values distinct
in-order indexes
"preorder" indexes – slots
ranks
timers – slots

1 1 1 1 1 10 0 0 0 0 0
1a 2a 3a 4a 5a 6a

0 0 0 0 4 41
2 0 0 0 2 4 4

2 2 2 2 3 3
4 4 4 5 3 3
4 4 4 5 6 6

1b

2b

3b

4

5b

b 6
1

3

654
2

b

3 0 0 0 2 4 4

Merging and Merge-sort in a Single Hop Radio Network – p.9/31

Ranking

Ranking of a1. . . am in b1. . . bm:
a1. . . am – sorted
b1. . . bm – sorted
(balanced binary tree Tm)
all values distinct
in-order indexes
"preorder" indexes – slots
ranks
timers – slots

1 1 1 1 1 10 0 0 0 0 0
1a 2a 3a 4a 5a 6a

0 0 0 0 4 41
2 0 0 0 2 4 4

2 2 2 2 3 3
4 4 4 5 3 3
4 4 4 5 6 6
− − − 5 6 6

1b

2b

3b

4

5b

b 6
1

3

654
2

b

3 0 0 0 2 4 4
4 0 0 1 2 4 4

Merging and Merge-sort in a Single Hop Radio Network – p.10/31

Ranking

Ranking of a1. . . am in b1. . . bm:
a1. . . am – sorted
b1. . . bm – sorted
(balanced binary tree Tm)
all values distinct
in-order indexes
"preorder" indexes – slots
ranks
timers – slots

1 1 1 1 1 10 0 0 0 0 0
1a 2a 3a 4a 5a 6a

0 0 0 0 4 41
2 0 0 0 2 4 4

2 2 2 2 3 3
4 4 4 5 3 3
4 4 4 5 6 6
− − − 5 6 6

− − − − 6 65 0 0 1 3 4 4

1b

2b

3b

4

5b

b 6
1

3

654
2

b

3 0 0 0 2 4 4
4 0 0 1 2 4 4

Merging and Merge-sort in a Single Hop Radio Network – p.11/31

Ranking

Ranking of a1. . . am in b1. . . bm:
a1. . . am – sorted
b1. . . bm – sorted
(balanced binary tree Tm)
all values distinct
in-order indexes
"preorder" indexes – slots
ranks
timers – slots

1 1 1 1 1 10 0 0 0 0 0
1a 2a 3a 4a 5a 6a

0 0 0 0 4 41
2 0 0 0 2 4 4

2 2 2 2 3 3
4 4 4 5 3 3
4 4 4 5 6 6
− − − 5 6 6

− − − − 6 65 0 0 1 3 4 4
− − − − − −0 0 1 3 4 4

1b

2b

3b

4

5b

b 6
1

3

654
2

b

3 0 0 0 2 4 4
4 0 0 1 2 4 4

6

Merging and Merge-sort in a Single Hop Radio Network – p.12/31

Ranking

procedure Rank(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
begin

Each ai does: timer[ai]← 1; rank[ai]← 0;
for time slot d← 1 to m do

Let x be such that d is preorder index of x.
bx broadcasts its key k.
Each aj with timer[aj] = d listens and does:
if key[aj] < k then

timer[aj]← preorder index of left child of x

else
timer[aj]← preorder index of right child of x
rank[aj]← x;

end

Merging and Merge-sort in a Single Hop Radio Network – p.13/31

Energetic cost and time
Energy:

Each bi broadcasts once.
Each ai listens dlg(m + 1)e (height of Tm)times

Time: m slots.

Merging and Merge-sort in a Single Hop Radio Network – p.14/31

Merging
Merging a1. . . am with b1. . . bm:

Ranking a1. . . am in b1. . . bm

Ranking b1. . . bm in a1. . . am

Each ai and bi computes final index of its key as:
i + (its rank in the other sequence).
Permutation routing: In step t, the element with
index= t broadcasts its key to the tth element of the
merged sequence

Merging and Merge-sort in a Single Hop Radio Network – p.15/31

Merging
Merging a1. . . am with b1. . . bm:

Ranking a1. . . am in b1. . . bm

Ranking b1. . . bm in a1. . . am

Each ai and bi computes final index of its key as:
i + (its rank in the other sequence).
Permutation routing: In step t, the element with
index= t broadcasts its key to the tth element of the
merged sequence

Merging and Merge-sort in a Single Hop Radio Network – p.15/31

Merging
Merging a1. . . am with b1. . . bm:

Ranking a1. . . am in b1. . . bm

Ranking b1. . . bm in a1. . . am

Each ai and bi computes final index of its key as:
i + (its rank in the other sequence).
Permutation routing: In step t, the element with
index= t broadcasts its key to the tth element of the
merged sequence

Merging and Merge-sort in a Single Hop Radio Network – p.15/31

Merging
Merging a1. . . am with b1. . . bm:

Ranking a1. . . am in b1. . . bm

Ranking b1. . . bm in a1. . . am

Each ai and bi computes final index of its key as:
i + (its rank in the other sequence).

Permutation routing: In step t, the element with
index= t broadcasts its key to the tth element of the
merged sequence

Merging and Merge-sort in a Single Hop Radio Network – p.15/31

Merging
Merging a1. . . am with b1. . . bm:

Ranking a1. . . am in b1. . . bm

Ranking b1. . . bm in a1. . . am

Each ai and bi computes final index of its key as:
i + (its rank in the other sequence).
Permutation routing: In step t, the element with
index= t broadcasts its key to the tth element of the
merged sequence

Merging and Merge-sort in a Single Hop Radio Network – p.15/31

Simple Merge

procedure Merge(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
begin

Rank(〈a1, . . . , am〉,〈b1, . . . , bm〉);
Rank(〈b1, . . . , bm〉,〈a1, . . . , am〉);
Each ai does: idx[ai]← i + rank[ai];
Each bi does: idx[bi]← i + rank[bi];
For 1 ≤ i ≤ m let ci = ai and cm+i = bi.
for time slot t← 1 to 2m do

ci with idx[ci] = t broadcasts its key k.
ct listens and does: new[ct]← k;

Each ci does: key[ci]← new[ci];
end

Merging and Merge-sort in a Single Hop Radio Network – p.16/31

Merge: Energetic cost
Energy:

First Rank:
each ai: dlg(m + 1)e

each bi: 1

Second Rank:
each bi: dlg(m + 1)e

each ai: 1

last for loop:
each station: 2 (once listens, once broadcasts)

Totally: energ. cost: dlg(m + 1)e+ 3

Merging and Merge-sort in a Single Hop Radio Network – p.17/31

Merge: time
First Rank: m

Second Rank: m

Last for loop: 2m

Total time: 4m

Merging and Merge-sort in a Single Hop Radio Network – p.18/31

Merge-sort

Obvious application of Merge: (Let n = 2k)
Energy

E(n) =
k−1∑

l=0

(dlg(2l + 1)e+ 3)

=
1

2
lg2 n +

7

2
lg n

Time

T (n) =
k−1∑

l=0

n/(2 · 2l) · (4 · 2l)

= 2n lg n

Merging and Merge-sort in a Single Hop Radio Network – p.19/31

Remark:
In all mergings except the last one:

Instead of the last “for” loop (i.e. permutation
routing): Each station ci internally temporarily
modifies its global number to the number of the
destination of its key and acts as its destination.

Energy
E(n) =

1

2
lg2 n +

3

2
lg n + 2

Time
T (n) = n lg n + n

Merging and Merge-sort in a Single Hop Radio Network – p.20/31

Remark:
In all mergings except the last one:

Instead of the last “for” loop (i.e. permutation
routing): Each station ci internally temporarily
modifies its global number to the number of the
destination of its key and acts as its destination.

Energy
E(n) =

1

2
lg2 n +

3

2
lg n + 2

Time
T (n) = n lg n + n

Merging and Merge-sort in a Single Hop Radio Network – p.20/31

Balancing of listening energy
Each block of dlg(m + 1)e
listeners computes the rank
of its leader. (The mes-
sage to the next listener:
(leader’s key, timer, rank))

Energetic cost:
broadcasting: 1

listening: 2

Time: 2n.

Merging and Merge-sort in a Single Hop Radio Network – p.21/31

Balancing of listening energy
Each block of dlg(m + 1)e
listeners computes the rank
of its leader. (The mes-
sage to the next listener:
(leader’s key, timer, rank))
Energetic cost:

broadcasting: 1

listening: 2

Time: 2n.

Merging and Merge-sort in a Single Hop Radio Network – p.21/31

Balancing of listening energy
Each block of dlg(m + 1)e
listeners computes the rank
of its leader. (The mes-
sage to the next listener:
(leader’s key, timer, rank))
Energetic cost:

broadcasting: 1

listening: 2

Time: 2n.

Merging and Merge-sort in a Single Hop Radio Network – p.21/31

Selecting winners
Each leader is informed about
its rank by the last listener in
its block and overhears the
rank of the next leader.
For each rank, the last leader
with this rank becomes a win-
ner.

Energetic cost: 2. (each
leader listens to its own and
its successor’s rank)
Time: dm/dlg(m + 1)ee

0 5 5 9

Merging and Merge-sort in a Single Hop Radio Network – p.22/31

Selecting winners
Each leader is informed about
its rank by the last listener in
its block and overhears the
rank of the next leader.
For each rank, the last leader
with this rank becomes a win-
ner.
Energetic cost: 2. (each
leader listens to its own and
its successor’s rank)

Time: dm/dlg(m + 1)ee

0 5 5 9

Merging and Merge-sort in a Single Hop Radio Network – p.22/31

Selecting winners
Each leader is informed about
its rank by the last listener in
its block and overhears the
rank of the next leader.
For each rank, the last leader
with this rank becomes a win-
ner.
Energetic cost: 2. (each
leader listens to its own and
its successor’s rank)
Time: dm/dlg(m + 1)ee

0 5 5 9

Merging and Merge-sort in a Single Hop Radio Network – p.22/31

Setting group borders

Each winner informs its suc-
cessor bi in the other se-
quence about its block num-
ber in the i-th time slot.

0 5 5 9
1 3 4

6 101

1 2 3 4

Energetic cost: 1.
Time: m.

Merging and Merge-sort in a Single Hop Radio Network – p.23/31

Setting group borders

Each winner informs its suc-
cessor bi in the other se-
quence about its block num-
ber in the i-th time slot.

0 5 5 9
1 3 4

6 101

1 2 3 4

Energetic cost: 1.
Time: m.

Merging and Merge-sort in a Single Hop Radio Network – p.23/31

Grouping
Each informed station sends
its block number to its succes-
sor.
Successor ignores this if it
was earlier informed by some
winner.

0 5 5 9

3 41

Energetic cost: 2.
Time: m− 1.

Merging and Merge-sort in a Single Hop Radio Network – p.24/31

Grouping
Each informed station sends
its block number to its succes-
sor.
Successor ignores this if it
was earlier informed by some
winner.

0 5 5 9

3 41

Energetic cost: 2.
Time: m− 1.

Merging and Merge-sort in a Single Hop Radio Network – p.24/31

Ranking with energy O(lg lg m)

Each station listens only to the
tree with its group number

3 41

Energetic cost: listening: O(lg lg m), broadcasting: 1.
Time: O(m)

Merging and Merge-sort in a Single Hop Radio Network – p.25/31

Iterating of regrouping
Instead of all stations comput-
ing their own ranks, blocks of ≈
lg lg m stations compute ranks of
their leaders.
Now the density of the leaders is
much higher.
The message to the next slave is:
(leader’s key, group, rank, timer)

3 41

Then select the winners that split the other sequence into
groups.

Note that each iteration works in opposite direction to the
previous one.

Merging and Merge-sort in a Single Hop Radio Network – p.26/31

Iterating of regrouping
Instead of all stations comput-
ing their own ranks, blocks of ≈
lg lg m stations compute ranks of
their leaders.
Now the density of the leaders is
much higher.
The message to the next slave is:
(leader’s key, group, rank, timer)

3 41

Then select the winners that split the other sequence into
groups.
Note that each iteration works in opposite direction to the
previous one.

Merging and Merge-sort in a Single Hop Radio Network – p.26/31

Time and energy
For the whole iteration (computing ranks of leaders,
selecting winners, splitting the other sequence into groups):

the energetic cost is O(1)

time is O(m)

Merging and Merge-sort in a Single Hop Radio Network – p.27/31

h(m, i) and l(m)

h(m, i) =

{

m, if i = 0

dlg(m + 1)e, if i ≥ 1

h(m, i + 1) is the height of balanced binary tree with h(m, i)
nodes.
Thus h(m, i) is the block size in ith iteration.

l(m) = min{i : h(m, i) ≤ 2}.

h(m, 0), h(m, 1), . . . 2
︸ ︷︷ ︸

l(m)

, 2, 2, 2, 2 . . .

Note that: l(m) is O(lg∗ m).

Merging and Merge-sort in a Single Hop Radio Network – p.28/31

h(m, i) and l(m)

h(m, i) =

{

m, if i = 0

dlg(m + 1)e, if i ≥ 1

h(m, i + 1) is the height of balanced binary tree with h(m, i)
nodes.
Thus h(m, i) is the block size in ith iteration.

l(m) = min{i : h(m, i) ≤ 2}.

h(m, 0), h(m, 1), . . . 2
︸ ︷︷ ︸

l(m)

, 2, 2, 2, 2 . . .

Note that: l(m) is O(lg∗ m).
Merging and Merge-sort in a Single Hop Radio Network – p.28/31

O(lg∗m)

After 2dl(m)/2e+ 2 = O(lg∗ m) iterations the group numbers
in each sequence refer to blocks of size two in the other
sequence.
Hence, each station can compute its rank by listening to at
most two messages.

Theorem: Merging of two sequences of length m can be
done in time Θ(m lg∗ m) with energetic cost (of both
listening and broadcasting) Θ(lg∗ m)

Merging and Merge-sort in a Single Hop Radio Network – p.29/31

O(lg∗m)

After 2dl(m)/2e+ 2 = O(lg∗ m) iterations the group numbers
in each sequence refer to blocks of size two in the other
sequence.
Hence, each station can compute its rank by listening to at
most two messages.
Theorem: Merging of two sequences of length m can be
done in time Θ(m lg∗ m) with energetic cost (of both
listening and broadcasting) Θ(lg∗ m)

Merging and Merge-sort in a Single Hop Radio Network – p.29/31

Concluding remarks
Exact asymptotic bounds for energetic cost?

of merging (constant?)
of sorting (we ignore cost of internal computations
and stations may have larger memory) (Ω(lg n)?)

The case: each station stores k keys instead of one
(Merging algorithm in DELIS-TR-0239:
energ. cost: ≈ 8k + 4 lg m, time: ≈ 6m · k + m)

Merging and Merge-sort in a Single Hop Radio Network – p.30/31

Concluding remarks
Exact asymptotic bounds for energetic cost?

of merging (constant?)
of sorting (we ignore cost of internal computations
and stations may have larger memory) (Ω(lg n)?)

The case: each station stores k keys instead of one
(Merging algorithm in DELIS-TR-0239:
energ. cost: ≈ 8k + 4 lg m, time: ≈ 6m · k + m)

Merging and Merge-sort in a Single Hop Radio Network – p.30/31

Thank you!

Merging and Merge-sort in a Single Hop Radio Network – p.31/31

	Model of computation
	Statement of the sorting problem
	Sorting on single hop:
	Merging?
	Ranking
	Ranking
	Ranking
	Ranking
	Ranking
	Ranking
	Ranking
	Ranking
	Energetic cost and time
	Merging
	Simple Merge
	Merge: Energetic cost
	Merge: time
	Merge-sort
	Remark:
	Balancing of listening energy
	Selecting winners
	Setting group borders
	Grouping
	Ranking with energy $O(lg lg m)$
	Iterating of regrouping
	Time and energy
	$h(m,i)$
and $l(m)$
	$O(lg ^* m)$
	Concluding remarks
	

