Computational Complexity of Relay Placement in Sensor Networks

Jukka Suomela

24 January 2006

Contents:

- Wireless Sensor Networks
- Relay Placement
- Problem Classes
- Computational Complexity

Helsinki Institute for Information Technology HIIT, Basic Research Unit Project: Networking and Architecture for Proactive Systems (NAPS)

Wireless Sensor Networks

- Sensor nodes are small and inexpensive computers which are equipped with sensors and wireless communication capabilities
- Sensor nodes may be deployed manually or even dropped from an aeroplane
- After deployment, sensor nodes form an *ad-hoc network* which will *route* data from sensor nodes towards a *sink* node
- *Energy consumption* must be very low: nodes may need to operate for years without anyone changing or recharging batteries
- Possible uses include environmental and weather monitoring; home automation; agriculture; tracking goods in commerce and industry; monitoring machines; health care and medical diagnostics; security systems; and military applications

Optimising Sensor Networks (1)

Possible target functions:

- Lifetime before batteries are drained
- Amount of data gathered during lifetime
- Quality of data gathered:
 - coverage: space, time
 - accuracy of data
 - probability of detecting or missing events

We focus on balanced data gathering: $\lambda \min q_{\eta} + (1 - \lambda) \arg q_{\eta}$.

- Not only lot of data but also some data from all nodes
- Formulated by Falck et al. (2004)

Optimising Sensor Networks (2)

Possible variables:

- Node hardware and software
- Node placement
- Scheduling node activity
- Routing
- Aggregating, summarising, and buffering data

We combine both *node placement* and *routing* issues.

Relay Placement Problem (1)

Problem:

- Given a deployed sensor network,
- add a small number of new *relay nodes*
- in order to maximise balanced data gathering

Typically, the relay nodes would be more expensive devices with larger batteries. Relays do not sense, they only forward data.

If we can afford a few relay nodes, where should we put them?

Relay Placement Problem (2)

Example:

(1.25-approximate solutions illustrated)

Problem Classes (1)

The general relay placement problem needs to be restricted; otherwise we do not even have a finite parametrisation of a problem instance. We consider restrictions in the following five dimensions.

1. Type:	Decision
	Relay-constrained optimal
	Relay-constrained k -optimal
	Utility-constrained optimal
	Utility-constrained k -optimal
2. Utility:	Balanced data gathering

Problem Classes (2)

3. Possible relay locations:	Unrestricted
	– Planar
	– Finite set
	– Sensor upgrade
4. Transmission costs:	Unrestricted
	- Location dependent
	- Line-of-sight
	- Free space
5. Batteries:	Unrestricted
	- Identical

All Classes Are NP-hard (1)

Reduction from Partition:

All Classes Are NP-hard (2)

Battery capacities of nodes κ_i correspond to values a_i in the Partition problem.

All available data in η (η') can be transmitted to the sink via some of the nodes κ_i (κ'_i) and the corresponding relays iff the relays are placed according to the solution of the partition problem.

A solution is optimal iff all available data is gathered.

Here $X = \{1, 2, 3\}$ is a solution to the Partition problem: $a_1 + a_2 + a_3 = a_4$.

With Obstacles, Approximation Is NP-hard (1)

Reduction from Set Covering:

With Obstacles, Approximation Is NP-hard (2)

Reduction from Set Covering:

- Placing m relays corresponds to choosing m subsets.
- For each i, there is a transmission path $\eta_i \to \text{relay} \to \text{sink}$ iff there is a subset that contains i.
- Choose $\lambda = 1$, optimise minimum. The utility is zero unless some data is gathered from each node.
- Finding a solution with *any* positive utility is at least as hard as solving Set Covering exactly.
- Any approximation algorithm for relay placement would provide an exact solution to Set Covering.

Papers

- J. Suomela: Computational complexity of relay placement in sensor networks. *Proc. SOFSEM 2006*.
- P. Floréen, P. Kaski, J. Kohonen and P. Orponen: Exact and approximate balanced data gathering in energy-constrained sensor networks. *Theoretical Computer Science* 344 (2005).
- E. Falck, P. Floréen, P. Kaski, J. Kohonen and P. Orponen: Balanced data gathering in energy-constrained sensor networks. *Proc. Algosensors* 2004.

Software

• Source code for k-optimal relay placement is freely available.

Summary

• How to optimise data gathering in wireless sensor networks by adding a small number of new relay nodes

Future Research

- More on approximability and inapproximability
- Focus on the amount of new relevant information instead of the amount of raw sensor readings
- Not only relay placement and routing but also sensor placement and data aggregation

```
Jukka Suomela, jukka.suomela@cs.helsinki.fi, http://www.cs.helsinki.fi/jukka.suomela/
```