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Historical Background The Roman Empire in the times of Constantine




A pure graph model
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Britain in danger
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Problem definition

A Roman domination function of a graph G = (V,E) is a function R : V —
{0, 1,2} with

VveV:R(w)=0=3dJxe Nw) : R(x) = 2.

ROMAN DOMINATION (ROMAN)

Given: Agraph G = (V, E)

Parameter: a positive integer k

Question: Is there a Roman domination function R such that

R(V):= Y R(z) <k?
xeV
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The Curse of Combinatorics




Parameterized complexity in a nutshell

Running time O(f(k)p(n))

Problem kernel of size g(k), computable in time q(n).
Thm.: Both approaches yield the same.

Complexity class: FP7T

Standard approaches: search trees & kernelization



The hard guys on the Turing way

WI[1] can be characterized by the k-step halting problem of single-tape nonde-
terministic Turing machines.

W/[2] can be characterized by the following problem on Turing machines:

SHORT MULTI-TAPE NONDETERMINISTIC TURING MACHINE COMPUTATION
Given: A multi-tape nondeterministic Turing machine M (with two-way infinite
tapes), an input string «

Parameter: a positive integer k

Question: Is there an accepting computation of M on input x that reaches a final
accepting state in at most k steps?



Parameterized reduction

A parameterized reduction is a function r that, for some polynomial p and some
function g, is computable in time O(g(k)p(|I|)) and maps an instance (I, k) of
P onto an instance (I, k) = (I’, k") of P’ such that

e (I,k) is a YES-instance of P if and only if (I’, k") is a YES-instance of P’
and

o k' < g(k).

We also say that P reduces to P’.

Remark: FP7 C W[1] C W[Z]...
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Completeness results

Theorem 1 ROMAN DOMINATION is W[2]-complete.



Membership in W[2]
G = (V, E): an instance of ROMAN DOMINATION; let &£ > O.

The corresponding Turing machine 7" has |V | 4 1 tapes; let they be indexed by
{0} U V.

Tape symbols: (V' x {1,2}) on tape 0 and # on the other tapes.

The edge relation of G is “hard-wired” into the transition function of T'.

The input string of 1" is empty.



First phase: T nondeterministically guesses the Roman domination function R
and writes it on tape O using the letters from V' x {1, 2} as follows:

T moves the head on tape 0 one step to the right, and writes there a guess
(v,1) € (V x {1,2}).

Upon writing (v, 1), T" also increments an internal-memory counter c by i.

If ¢ < k, T can nondeterministically continue in phase one or transition into
phase two;

if ¢ > k, T hangs up.



Second phase: T has to verify its guess.

Upon reading symbol (v, 1) on tape O, T writes # on the tape addressed by v
and moves that head one step to the right.

Upon reading (v, 2) on tape O, T writes # on all tapes addressed by vertices
from N [v] and moves the corresponding heads one step to the right.

Moreover, after reading symbol (v,) on tape O, T' moves the head on tape O
one step to the left.

Upon reading the blank symbol on tape 0, T moves all other heads one step to
the left;

only if then all V-addressed tapes show # under their respective heads, T ac-
cepts.



Time analysis:

The first phase takes k steps.
The second phase takes another k + 1 steps.

Hence, (G, k) is a YES-instance to ROMAN DOMINATION iff T" has an accepting

computation within 2k + 1 steps, so that we actually described a parameterized
reduction.



Hardness for W[2]

We will show W[2]-hardness with the help of the following problem:

RED-BLUE DOMINATING SET (RBDYS)

Given: A graph G = (V, E) with V partitioned as Vigg W Ve

Parameter: a positive integer k

Question: Is there a red-blue dominating set D C V,gq With |D| < k, i.e., Vpjue C
N(D)?

Lemma 2 (Downey/Fellows) RED-BLUE DOMINATING SET, RESTRICTED TO BI-
PARTITE GRAPHS is W[2]-hard.



Assume that G = (V, FE) is an instance of RED-BLUE DOMINATING SET, RESTRICTED TO BIPAR-
TITE GRAPHS, i.e., V = Vigq W Vpue- W.I.O.Q., |Vieq| > 1.

In the simulating ROMAN DOMINATION instance, we construct a graph G’ = (V'/, E’), where

V/: (WedU{l,...,Qk‘l_ 1}) X {1,...,k}UVb|ue,
and E’ contains the following edges (and no others):

1. G'[Vieq X {i}] is a complete graph for each i € {1,..., k}.
2. Foralli € {1,...,k} and x € Vieq, ¥ € Vhe, {z,y} € F iff {[z,i],y} € E'.
3. Foralli e {1,...,k},7€{1,....,2k+ 1} and x € Vieq: {[=,1],[j,7]} € F'.

Claim: G has a red-blue dominating set D of size k iff G’ has a Roman domination function R
with >~ . R(x) = 2k.
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A search tree result for planar graphs

Theorem 3 PLANAR ROMAN DOMINATION can be solved in ©*(3.3723%) time.

Necessary ingredients:

Adaptation of earlier results on kernelization and search tree algorithms for PLA-
NAR DOMINATING SET.

For the search tree part, a Euler type argument is needed.



Dynamic programming for graphs of bounded treewidth

Let G = (V, E) be a graph. A tree decomposition of G is a pair ({X; | i« € I},T), where each
X, is a subset of V, called a bag, and T' is a tree with the elements of I as nodes. The following
three properties must hold:

1. Uz'eI Xi =V,
2. for every edge {u,v} € E, thereis ani € I such that {u,v} C Xj;
3. forallz,j,k € I, if 5 lies on the path between 7 and k in T', then X; N X}, C Xj.

The width of the tree decomposition ({X; | i € I},T) equals
max{|X;| |ie I} — 1.

The treewidth of GG is the minimum k such that G has a tree decomposition of width &, also
written tw(G) for short.

A tree decomposition with a particularly simple structure is given by the following definition.



A tree decomposition ({X; | ¢ € I},T) with a distinguished root node r is called a nice tree
decomposition if the following conditions are satisfied:

1. Every node of the tree T has at most 2 children.

2. If anode n has two children n’ and n”, then X,, = X,, = X, (in this case n is called a join
node).

3. If a node n has one child »/, then either

(@) |Xn| =|Xn|+ 1and X,y C X, (in this case n is called an insert node or an introduce
node), or

(b) | X, = |Xn|—1and X, C X, (inthis case n is called a forget node).

Observe that each node in a nice tree decomposition is either a join node, an insert node, a
forget node, or a leaf node.



Our example revisited (Path decomposition)

Britain

A

frica

Rome

Constanting

N

Egypt

ople

Asia Minor




Dynamic Programming

We need to store four states per vertex in each node.

0,1,2 are the values that the Roman domination function is assumed to assign
to a particular vertex.

O also tells us that the Roman domination function assigns 0 to that vertex.

The difference in the semantics of 0, O is the following:

0: the vertex is already dominated,

0: we still ask for a domination of this vertex.

Additional complication when dealing with join nodes:

If we update an assignment that maps vertex x onto O, it is not necessary that
both children assign O to z; it is sufficient that one of the two branches does,
while the other assigns 0.



Alber’s monotonicity trick  For every vertex x in the parent bag, we consider:

e either 2, 1 or O is assigned to x; then, the same assignment must have been
made in the two children;

e or O is assigned to z; then, we have two possible assignments in the child
nodes: O to z in the left child and O to = in the right child or vice versa.

Theorem 4 MINIMUM ROMAN DOMINATION, parameterized by the treewidth tw(G)
of the input graph G, can be solved in time O(StW(G)W(G)D.

Remark: Complexity O(4¢V (@®))) if £ is the pathwidth of G.



Our example revisited (Path decomposition, 1st bag)
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Our example revisited (Path decomposition, 2nd bag)

Britain

0N

A

frica

Rome

[\

Constanting

ople

Asia Minor




Our example revisited (Path decomposition, 3rd bag)
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Our example revisited (Path decomposition, 4th bag)
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Our example revisited (Path decomposition, 5th bag)
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Our example revisited (Path decomposition, 6th bag)
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Our example revisited (Path decomposition, 2nd bag, bad guess)
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Our example revisited (Path decomposition, 3rd bag, bad guess)
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Application to planar graphs

Theorem 5 [Fomin and Thilikos 2003] If G is a planar graph which has a domi-
nating set of size k, then G has treewidth of at most 4.51-°>vk < 9.55V/k.

Corollary 6 PLANAR ROMAN DOMINATION can be solved in time

O*(5451VEy = (9*(222.165Vky.



A dual version of ROMAN DOMINATION

We finally mention that the following version of a parametric dual of ROMAN is
In P77 by the method of kernelization, given a graph G and a parameter k, IS
there a Roman domination function R such that |[R=1(1)| + 2|R~1(0)| > k; ?

With our definition, we have the desirable property that (G, k;) is a YES-instance
of this variant of a dual of ROMAN DOMINATION iff (G, 2|V (G)| — k,) is a YES-
iInstance of ROMAN. In other words, R is maximum for this dual version of RO-
MAN iff R is minimum for ROMAN.

Theorem 7 Our version of parametric dual of ROMAN DOMINATION allows for
a problem kernel of size (7/6)k,4, measured in terms of vertices. Hence, this
problem is in FP7T.



Take Away

e As can be seen from the W[2] completeness section, the “Turing way” to
parameterized complexity is often quite amenable and may offer advantages
over the standard approach as exhibited in [DowFel99].

e Strive to obtain structural results when developing algorithms: this turned
out to be very beneficial for PLANAR ROMAN DOMINATION, since the results
obtained for PLANAR DOMINATING SET could be “recycled.



