
ROMAN DOMINATION:

a parameterized perspective

Henning Fernau

Universität Trier

University of Hertfordshire

Universität Tübingen

The University of Newcastle

Overview

• Problem definition & introductory example

• FPT : the methodology

• Completeness results

• Algorithmic results

Historical Background The Roman Empire in the times of Constantine

A pure graph model

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

Constantine’s solution

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

2 2

Britain in danger

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

2 2

Another solution

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

2

1

1

Problem definition

A Roman domination function of a graph G = (V, E) is a function R : V →
{0,1,2} with

∀v ∈ V : R(v) = 0 ⇒ ∃x ∈ N(v) : R(x) = 2.

ROMAN DOMINATION (ROMAN)
Given: A graph G = (V, E)
Parameter: a positive integer k

Question: Is there a Roman domination function R such that

R(V) :=
∑
x∈V

R(x) ≤ k?

Overview

• Problem definition & introductory example

• FPT : the methodology

• Completeness results

• Algorithmic results

The Curse of Combinatorics

n

k

Parameterized complexity in a nutshell

Running time O(f(k)p(n))

Problem kernel of size g(k), computable in time q(n).

Thm.: Both approaches yield the same.

Complexity class: FPT

Standard approaches: search trees & kernelization

The hard guys on the Turing way

W[1] can be characterized by the k-step halting problem of single-tape nonde-
terministic Turing machines.

W[2] can be characterized by the following problem on Turing machines:

SHORT MULTI-TAPE NONDETERMINISTIC TURING MACHINE COMPUTATION

Given: A multi-tape nondeterministic Turing machine M (with two-way infinite
tapes), an input string x

Parameter: a positive integer k

Question: Is there an accepting computation of M on input x that reaches a final
accepting state in at most k steps?

Parameterized reduction

A parameterized reduction is a function r that, for some polynomial p and some
function g, is computable in time O(g(k)p(|I|)) and maps an instance (I, k) of
P onto an instance r(I, k) = (I ′, k′) of P ′ such that

• (I, k) is a YES-instance of P if and only if (I ′, k′) is a YES-instance of P ′
and

• k′ ≤ g(k).

We also say that P reduces to P ′.

Remark: FPT ⊆ W[1] ⊆ W[2] . . .

Overview

• Problem definition & introductory example

• FPT : the methodology

• Completeness results

• Algorithmic results

Completeness results

Theorem 1 ROMAN DOMINATION is W[2]-complete.

Membership in W[2]

G = (V, E): an instance of ROMAN DOMINATION; let k > 0.

The corresponding Turing machine T has |V |+ 1 tapes; let they be indexed by
{0} ∪ V .
Tape symbols: (V × {1,2}) on tape 0 and # on the other tapes.
The edge relation of G is “hard-wired” into the transition function of T .
The input string of T is empty.

First phase: T nondeterministically guesses the Roman domination function R

and writes it on tape 0 using the letters from V × {1,2} as follows:
T moves the head on tape 0 one step to the right, and writes there a guess
(v, i) ∈ (V × {1,2}).
Upon writing (v, i), T also increments an internal-memory counter c by i.
If c ≤ k, T can nondeterministically continue in phase one or transition into
phase two;
if c > k, T hangs up.

Second phase: T has to verify its guess.
Upon reading symbol (v,1) on tape 0, T writes # on the tape addressed by v

and moves that head one step to the right.
Upon reading (v,2) on tape 0, T writes # on all tapes addressed by vertices
from N [v] and moves the corresponding heads one step to the right.
Moreover, after reading symbol (v, i) on tape 0, T moves the head on tape 0

one step to the left.
Upon reading the blank symbol on tape 0, T moves all other heads one step to
the left;
only if then all V -addressed tapes show # under their respective heads, T ac-
cepts.

Time analysis:

The first phase takes k steps.
The second phase takes another k + 1 steps.

Hence, (G, k) is a YES-instance to ROMAN DOMINATION iff T has an accepting
computation within 2k +1 steps, so that we actually described a parameterized
reduction.

Hardness for W[2]

We will show W[2]-hardness with the help of the following problem:

RED-BLUE DOMINATING SET (RBDS)
Given: A graph G = (V, E) with V partitioned as Vred] Vblue
Parameter: a positive integer k

Question: Is there a red-blue dominating set D ⊆ Vred with |D| ≤ k, i.e., Vblue ⊆
N(D)?

Lemma 2 (Downey/Fellows) RED-BLUE DOMINATING SET, RESTRICTED TO BI-
PARTITE GRAPHS is W[2]-hard.

Assume that G = (V, E) is an instance of RED-BLUE DOMINATING SET, RESTRICTED TO BIPAR-
TITE GRAPHS, i.e., V = Vred] Vblue. W.l.o.g., |Vred| > 1.

In the simulating ROMAN DOMINATION instance, we construct a graph G′ = (V ′, E′), where

V ′ = (Vred ∪ {1, . . . ,2k + 1})× {1, . . . , k} ∪ Vblue,

and E′ contains the following edges (and no others):

1. G′[Vred × {i}] is a complete graph for each i ∈ {1, . . . , k}.

2. For all i ∈ {1, . . . , k} and x ∈ Vred, y ∈ Vblue, {x, y} ∈ E iff {[x, i], y} ∈ E′.

3. For all i ∈ {1, . . . , k}, j ∈ {1, . . . ,2k + 1} and x ∈ Vred: {[x, i], [j, i]} ∈ E′.

Claim: G has a red-blue dominating set D of size k iff G′ has a Roman domination function R
with

∑
x∈V ′ R(x) = 2k.

Overview

• Problem definition & introductory example

• FPT : the methodology

• Completeness results

• Algorithmic results

A search tree result for planar graphs

Theorem 3 PLANAR ROMAN DOMINATION can be solved in O∗(3.3723k) time.

Necessary ingredients:
Adaptation of earlier results on kernelization and search tree algorithms for PLA-
NAR DOMINATING SET.

For the search tree part, a Euler type argument is needed.

Dynamic programming for graphs of bounded treewidth

Let G = (V, E) be a graph. A tree decomposition of G is a pair 〈{Xi | i ∈ I}, T 〉, where each
Xi is a subset of V , called a bag, and T is a tree with the elements of I as nodes. The following
three properties must hold:

1.
⋃

i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi;

3. for all i, j, k ∈ I, if j lies on the path between i and k in T , then Xi ∩Xk ⊆ Xj.

The width of the tree decomposition 〈{Xi | i ∈ I}, T 〉 equals

max{|Xi| | i ∈ I} − 1.

The treewidth of G is the minimum k such that G has a tree decomposition of width k, also
written tw(G) for short.

A tree decomposition with a particularly simple structure is given by the following definition.

A tree decomposition 〈{Xi | i ∈ I}, T 〉 with a distinguished root node r is called a nice tree
decomposition if the following conditions are satisfied:

1. Every node of the tree T has at most 2 children.

2. If a node n has two children n′ and n′′, then Xn = Xn′ = Xn′′ (in this case n is called a join
node).

3. If a node n has one child n′, then either

(a) |Xn| = |Xn′|+1 and Xn′ ⊂ Xn (in this case n is called an insert node or an introduce
node), or

(b) |Xn| = |Xn′| − 1 and Xn ⊂ Xn′ (in this case n is called a forget node).

Observe that each node in a nice tree decomposition is either a join node, an insert node, a
forget node, or a leaf node.

Our example revisited (Path decomposition)

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

v

Dynamic Programming

We need to store four states per vertex in each node.
0,1,2 are the values that the Roman domination function is assumed to assign
to a particular vertex.
0̂ also tells us that the Roman domination function assigns 0 to that vertex.
The difference in the semantics of 0, 0̂ is the following:
0: the vertex is already dominated,
0̂: we still ask for a domination of this vertex.

Additional complication when dealing with join nodes:
if we update an assignment that maps vertex x onto 0, it is not necessary that
both children assign 0 to x; it is sufficient that one of the two branches does,
while the other assigns 0̂.

Alber’s monotonicity trick For every vertex x in the parent bag, we consider:

• either 2, 1 or 0̂ is assigned to x; then, the same assignment must have been
made in the two children;

• or 0 is assigned to x; then, we have two possible assignments in the child
nodes: 0 to x in the left child and 0̂ to x in the right child or vice versa.

Theorem 4 MINIMUM ROMAN DOMINATION, parameterized by the treewidth tw(G)

of the input graph G, can be solved in time O(5tw(G)|V (G)|).

Remark: Complexity O(4`|V (G)|) if ` is the pathwidth of G.

Our example revisited (Path decomposition, 1st bag)

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

v

1

0

0

Our example revisited (Path decomposition, 2nd bag)

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

v

1

0

0

2

Our example revisited (Path decomposition, 3rd bag)

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

v

1

0

0

2

0

Our example revisited (Path decomposition, 4th bag)

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

v

1

0

0

2

0
0

Our example revisited (Path decomposition, 5th bag)

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

v

1

0

0

2

0
0

0

Our example revisited (Path decomposition, 6th bag)

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

v

1

0

0

2

0
0

0

1

Our example revisited (Path decomposition, 2nd bag, bad guess)

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

v

1

0

0

1

Our example revisited (Path decomposition, 3rd bag, bad guess)

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

v

1

0

0

1

x

Application to planar graphs

Theorem 5 [Fomin and Thilikos 2003] If G is a planar graph which has a domi-
nating set of size k, then G has treewidth of at most 4.51.5

√
k ≤ 9.55

√
k.

Corollary 6 PLANAR ROMAN DOMINATION can be solved in time

O∗(54.51.5
√

k) = O∗(222.165
√

k).

A dual version of ROMAN DOMINATION

We finally mention that the following version of a parametric dual of ROMAN is
in FPT by the method of kernelization, given a graph G and a parameter kd, is
there a Roman domination function R such that |R−1(1)|+ 2|R−1(0)| ≥ kd ?

With our definition, we have the desirable property that (G, kd) is a YES-instance
of this variant of a dual of ROMAN DOMINATION iff (G,2|V (G)| − kd) is a YES-
instance of ROMAN. In other words, R is maximum for this dual version of RO-
MAN iff R is minimum for ROMAN.

Theorem 7 Our version of parametric dual of ROMAN DOMINATION allows for
a problem kernel of size (7/6)kd, measured in terms of vertices. Hence, this
problem is in FPT .

Take Away

• As can be seen from the W[2] completeness section, the “Turing way” to
parameterized complexity is often quite amenable and may offer advantages
over the standard approach as exhibited in [DowFel99].

• Strive to obtain structural results when developing algorithms: this turned
out to be very beneficial for PLANAR ROMAN DOMINATION, since the results
obtained for PLANAR DOMINATING SET could be “recycled.”

