
A General Data Reduction Scheme for Domination
in Graphs

Jochen Alber1, Britta Dorn2, Rolf Niedermeier3

SOFSEM 2006

1 DIgSILENT GmbH, Power System Applications & Consulting, Germany
2 Mathematisches Institut, Universität Tübingen, Germany

3 Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Outline

I Dominating Set

1 Definitions

2 Reduction rules

3 Generalization of the rules

4 Hierarchy, reduction scheme

Outline

II Directed Dominating Set

1 Definition

2 Reduction rules

3 Directed Dominating Set on planar graphs

Dominating Set

given: G = (V ,E), undirected graph
k ∈ N

question: Does G have a dominating set V ′ of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ has a neighbor in V ′?

(every vertex in V \ V ′ is dominated by a vertex in V ′)

Dominating Set

given: G = (V ,E), undirected graph
k ∈ N

question: Does G have a dominating set V ′ of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ has a neighbor in V ′?

(every vertex in V \ V ′ is dominated by a vertex in V ′)

Dominating Set

given: G = (V ,E), undirected graph
k ∈ N

question: Does G have a dominating set V ′ of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ has a neighbor in V ′?

(every vertex in V \ V ′ is dominated by a vertex in V ′)

Dominating Set

given: G = (V ,E), undirected graph
k ∈ N

question: Does G have a dominating set V ′ of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ has a neighbor in V ′?

(every vertex in V \ V ′ is dominated by a vertex in V ′)

Dominating Set

given: G = (V ,E), undirected graph
k ∈ N

question: Does G have a dominating set V ′ of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ has a neighbor in V ′?

(every vertex in V \ V ′ is dominated by a vertex in V ′)

Dominating Set

given: G = (V ,E), undirected graph
k ∈ N

question: Does G have a dominating set V ′ of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ has a neighbor in V ′?

(every vertex in V \ V ′ is dominated by a vertex in V ′)

Dominating Set

given: G = (V ,E), undirected graph
k ∈ N

question: Does G have a dominating set V ′ of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ has a neighbor in V ′?

(every vertex in V \ V ′ is dominated by a vertex in V ′)

Dominating Set

given: G = (V ,E), undirected graph
k ∈ N

question: Does G have a dominating set V ′ of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ has a neighbor in V ′?

(every vertex in V \ V ′ is dominated by a vertex in V ′)

Dominating Set

given: G = (V ,E), undirected graph
k ∈ N

question: Does G have a dominating set V ′ of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ has a neighbor in V ′?

(every vertex in V \ V ′ is dominated by a vertex in V ′)

Application

Application

Fire station problem

For security reasons, each
city needs a fire station

— at least one in a city of
its neighborhood

Application

Fire station problem

For security reasons, each
city needs a fire station
— at least one in a city of
its neighborhood

Dominating Set

Dominating Set is

NP-complete

fixed-parameter tractable with parameter k on planar graphs

Dominating Set

Dominating Set is

NP-complete

fixed-parameter tractable with parameter k on planar graphs

Dominating Set

Dominating Set is

NP-complete

fixed-parameter tractable with parameter k on planar graphs

Fixed-parameter tractability

Idea: Restrict the seemingly inherent combinatorial explosion of
hard problems to some problem-specific parameters.

Definition (fixed-parameter tractable)

Problem P is fixed-parameter tractable
⇐⇒

P is solvable in O(f (k) · nc) time

Fixed-parameter tractability

Idea: Restrict the seemingly inherent combinatorial explosion of
hard problems to some problem-specific parameters.

Definition (fixed-parameter tractable)

Problem P is fixed-parameter tractable
⇐⇒

P is solvable in O(f (k) · nc) time

Fixed-parameter tractability

Idea: Restrict the seemingly inherent combinatorial explosion of
hard problems to some problem-specific parameters.

Definition (fixed-parameter tractable)

Problem P is fixed-parameter tractable
⇐⇒

P is solvable in O(f (k) · nc) time

Dominating Set

Dominating Set is

NP-complete

fixed-parameter tractable with parameter k on planar graphs

W[2]-complete

Dominating Set

Dominating Set is

NP-complete

fixed-parameter tractable with parameter k on planar graphs

W[2]-complete

Data reduction

Idea (for Dominating Set:)

Replace (in polynomial time) a given instance (G , k)
by “simpler” instance (G ′, k ′)

such that

(G , k) is a yes-instance ⇐⇒ (G ′, k ′) is a yes-instance

Data reduction

Idea (for Dominating Set:)

Replace (in polynomial time) a given instance (G , k)
by “simpler” instance (G ′, k ′)

such that

(G , k) is a yes-instance ⇐⇒ (G ′, k ′) is a yes-instance

Reduction rules

1 explore local structures of the graph

2 determine vertices as candidates for an optimal dominating set

3 reduce/shrink graph by removing vertices and edges

example:

Reduction rules

1 explore local structures of the graph

2 determine vertices as candidates for an optimal dominating set

3 reduce/shrink graph by removing vertices and edges

example:

Reduction rules

1 explore local structures of the graph

2 determine vertices as candidates for an optimal dominating set

3 reduce/shrink graph by removing vertices and edges

example:

Reduction rules

1 explore local structures of the graph

2 determine vertices as candidates for an optimal dominating set

3 reduce/shrink graph by removing vertices and edges

example:

Reduction rules

1 explore local structures of the graph

2 determine vertices as candidates for an optimal dominating set

3 reduce/shrink graph by removing vertices and edges

example:

Reduction rules

1 explore local structures of the graph

2 determine vertices as candidates for an optimal dominating set

3 reduce/shrink graph by removing vertices and edges

example:

Reduction rules

1 explore local structures of the graph

2 determine vertices as candidates for an optimal dominating set

3 reduce/shrink graph by removing vertices and edges

example:

Reduction rules

closed Neighborhood N[v] of a vertex v ∈ V

v

Nexit(v): vertices possessing neighbors outside of N[v]

Nguard(v): neighbors of exit-vertices in N(v)

Nprison(v): remaining vertices in N(v)

Reduction rules

closed Neighborhood N[v] of a vertex v ∈ V

v

Nexit(v): vertices possessing neighbors outside of N[v]

Nguard(v): neighbors of exit-vertices in N(v)

Nprison(v): remaining vertices in N(v)

Reduction rules

closed Neighborhood N[v] of a vertex v ∈ V

v

Nexit(v): vertices possessing neighbors outside of N[v]

Nguard(v): neighbors of exit-vertices in N(v)

Nprison(v): remaining vertices in N(v)

Reduction rules

closed Neighborhood N[v] of a vertex v ∈ V

v

Nexit(v): vertices possessing neighbors outside of N[v]

Nguard(v): neighbors of exit-vertices in N(v)

Nprison(v): remaining vertices in N(v)

Reduction rules

closed Neighborhood N[v] of a vertex v ∈ V

v

Nexit(v): vertices possessing neighbors outside of N[v]

Nguard(v): neighbors of exit-vertices in N(v)

Nprison(v): remaining vertices in N(v)

Reduction rules

closed Neighborhood N[v] of a vertex v ∈ V

v

Reduction rules

Rule 1

if Nprison(v) 6= ∅
then

choose v to belong to the dominating set
(add “gadget vertex”)

remove Nguard(v) ∪ Nprison(v)

Reduction rules

Neighborhood of 2 vertices u, v ∈ V

u v

Nexit(u, v)

Nguard(u, v)

Nprison(u, v)

Reduction rules

Neighborhood of 2 vertices u, v ∈ V

u v

Nexit(u, v)

Nguard(u, v)

Nprison(u, v)

Reduction rules

Neighborhood of 2 vertices u, v ∈ V

u v

Nexit(u, v)

Nguard(u, v)

Nprison(u, v)

Reduction rules

Neighborhood of 2 vertices u, v ∈ V

u v

Nexit(u, v)

Nguard(u, v)

Nprison(u, v)

Reduction rules

Problem: all prison-vertices might be dominated by one single
prison-vertex

u v

One single prisoner-vertex could be better
⇒ don’t apply rule

Reduction rules

Problem: all prison-vertices might be dominated by one single
prison-vertex

u v

One single prisoner-vertex could be better
⇒ don’t apply rule

Reduction rules

Problem: all prison-vertices might be dominated by one single
prison-vertex

u v

One single prisoner-vertex could be better
⇒ don’t apply rule

Reduction rules

Rule 2

if Nprison(u, v) 6= ∅

and Nprison(u, v) cannot be dominated
by a single guard- or prison-vertex

then:

distinguish 3 cases

Reduction rules

Rule 2

if Nprison(u, v) 6= ∅

and Nprison(u, v) cannot be dominated
by a single guard- or prison-vertex

then:
distinguish 3 cases

Reduction rules

u v Rule 2

case 1

Reduction rules

u v Rule 2

case 2

Reduction rules

u v Rule 2

case 3

Reduction rules

u v Rule 2

case 3

Reduction rules

u v

gadget
Rule 2

case 3

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

subsets of {u1, u2, u3}
W =
{{u1, u2}, {u1, u3}, {u1, u2, u3}}
Compactification:

Ŵ = {{u1, u2}, {u1, u3}}

alternatives

Walt =
W ∪ {{a, d}, {b, d}, {c , d},
{x , a, d}, {u2, a}, . . . }
Compactification:

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

subsets of {u1, u2, u3}

W =
{{u1, u2}, {u1, u3}, {u1, u2, u3}}
Compactification:

Ŵ = {{u1, u2}, {u1, u3}}

alternatives

Walt =
W ∪ {{a, d}, {b, d}, {c , d},
{x , a, d}, {u2, a}, . . . }
Compactification:

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

subsets of {u1, u2, u3}
W =
{{u1, u2}, {u1, u3}, {u1, u2, u3}}

Compactification:

Ŵ = {{u1, u2}, {u1, u3}}

alternatives

Walt =
W ∪ {{a, d}, {b, d}, {c , d},
{x , a, d}, {u2, a}, . . . }
Compactification:

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

subsets of {u1, u2, u3}
W =
{{u1, u2}, {u1, u3}, {u1, u2, u3}}
Compactification:

Ŵ = {{u1, u2}, {u1, u3}}

alternatives

Walt =
W ∪ {{a, d}, {b, d}, {c , d},
{x , a, d}, {u2, a}, . . . }
Compactification:

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

subsets of {u1, u2, u3}
W =
{{u1, u2}, {u1, u3}, {u1, u2, u3}}
Compactification:

Ŵ = {{u1, u2}, {u1, u3}}

alternatives

Walt =
W ∪ {{a, d}, {b, d}, {c , d},
{x , a, d}, {u2, a}, . . . }
Compactification:

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

subsets of {u1, u2, u3}
W =
{{u1, u2}, {u1, u3}, {u1, u2, u3}}
Compactification:

Ŵ = {{u1, u2}, {u1, u3}}

alternatives

Walt =
W ∪ {{a, d}, {b, d}, {c , d},
{x , a, d}, {u2, a}, . . . }

Compactification:

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

subsets of {u1, u2, u3}
W =
{{u1, u2}, {u1, u3}, {u1, u2, u3}}
Compactification:

Ŵ = {{u1, u2}, {u1, u3}}

alternatives

Walt =
W ∪ {{a, d}, {b, d}, {c , d},
{x , a, d}, {u2, a}, . . . }
Compactification:

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

Ŵ = {{u1, u2}, {u1, u3}}

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

Rule r

if Ŵ is “better” than Ŵalt
then

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

Ŵ = {{u1, u2}, {u1, u3}}

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

Rule r

if Ŵ is “better” than Ŵalt
then

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

Ŵ = {{u1, u2}, {u1, u3}}

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

Rule r

if Ŵ is “better” than Ŵalt
then

generalizing the rules for r vertices

u1

u2

u3

c
e

d

b
a

x

y

Ŵ = {{u1, u2}, {u1, u3}}

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

Rule r

if Ŵ is “better” than Ŵalt
then

remove all vertices in
Nprison ∪ Nguard which
are neighbors of all
elements of Ŵ

generalizing the rules for r vertices

u1

u2

u3

gadget

Ŵ = {{u1, u2}, {u1, u3}}

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

Rule r

if Ŵ is “better” than Ŵalt
then

remove all vertices in
Nprison ∪ Nguard which
are neighbors of all
elements of Ŵ

insert a gadget

Do we really need the r -Rules?

Definition:

A graph G = (V ,E) is said to be reduced with respect to r-Rule if
there is no set of distinct vertices u1, . . . , ur for which r -Rule can
be applied.

Do we really need the r -Rules?

Definition:

A graph G = (V ,E) is said to be reduced with respect to r-Rule if
there is no set of distinct vertices u1, . . . , ur for which r -Rule can
be applied.

Do we really need the r -Rules?

not reduced graphs reduced with respect to

1-Rule 2-Rule

Do we really need the r -Rules?

not reduced

graphs reduced with respect to

1-Rule 2-Rule

Do we really need the r -Rules?

not reduced

graphs reduced with respect to

1-Rule 2-Rule

Do we really need the r -Rules?

not reduced

graphs reduced with respect to

1-Rule 2-Rule

Do we really need the r -Rules?

not reduced graphs reduced with respect to

1-Rule 2-Rule

Do we really need the r -Rules?

not reduced graphs reduced with respect to

1-Rule

2-Rule

Do we really need the r -Rules?

not reduced graphs reduced with respect to

1-Rule

2-Rule

Do we really need the r -Rules?

not reduced graphs reduced with respect to

1-Rule 2-Rule

Do we really need the r -Rules?

graph reduced with respect to 1-Rule, 2-Rule, . . . , (r − 1)-Rule:

grid of width 2, length 2r − 2

not reduced with respect to r -Rule!

Theorem

The reduction scheme given by r -Rule builds
a strict hierarchy of rules

Do we really need the r -Rules?

graph reduced with respect to 1-Rule, 2-Rule, . . . , (r − 1)-Rule:

grid of width 2, length 2r − 2

not reduced with respect to r -Rule!

Theorem

The reduction scheme given by r -Rule builds
a strict hierarchy of rules

Do we really need the r -Rules?

graph reduced with respect to 1-Rule, 2-Rule, . . . , (r − 1)-Rule:

grid of width 2, length 2r − 2

not reduced with respect to r -Rule!

Theorem

The reduction scheme given by r -Rule builds
a strict hierarchy of rules

Do we really need the r -Rules?

graph reduced with respect to 1-Rule, 2-Rule, . . . , (r − 1)-Rule:

grid of width 2, length 2r − 2

not reduced with respect to r -Rule!

Theorem

The reduction scheme given by r -Rule builds
a strict hierarchy of rules

Running time

G = (V ,E), |V | = n

1-Rule: O(n3)

(if G planar: O(n))

2-Rule: O(n4) (if G planar: O(n3))

...

r -Rule: O(n2r)

Running time

G = (V ,E), |V | = n

1-Rule: O(n3) (if G planar: O(n))

2-Rule: O(n4) (if G planar: O(n3))

...

r -Rule: O(n2r)

Running time

G = (V ,E), |V | = n

1-Rule: O(n3) (if G planar: O(n))

2-Rule: O(n4) (if G planar: O(n3))

...

r -Rule: O(n2r)

Running time

G = (V ,E), |V | = n

1-Rule: O(n3) (if G planar: O(n))

2-Rule: O(n4) (if G planar: O(n3))

...

r -Rule: O(n2r)

Directed Dominating Set

given: ~G = (V , ~E), directed graph
k ∈ N

question: Does ~G have a directed dominating set V ′

of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ is dominated

by a vertex in V ′

Directed Dominating Set

given: ~G = (V , ~E), directed graph
k ∈ N

question: Does ~G have a directed dominating set V ′

of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ is dominated

by a vertex in V ′

Directed Dominating Set

given: ~G = (V , ~E), directed graph
k ∈ N

question: Does ~G have a directed dominating set V ′

of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ is dominated

by a vertex in V ′

Directed Dominating Set

given: ~G = (V , ~E), directed graph
k ∈ N

question: Does ~G have a directed dominating set V ′

of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ is dominated

by a vertex in V ′

Directed Dominating Set

given: ~G = (V , ~E), directed graph
k ∈ N

question: Does ~G have a directed dominating set V ′

of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ is dominated

by a vertex in V ′

Directed Dominating Set

given: ~G = (V , ~E), directed graph
k ∈ N

question: Does ~G have a directed dominating set V ′

of size ≤ k?

i.e., is there V ′ ⊆ V , |V ′| ≤ k

such that every vertex in V \ V ′ is dominated

by a vertex in V ′

Directed Dominating Set — reduction rules

Neighborhood of one vertex v ∈ V

v

Nexit(v)

Nenter(v)

Nguard(v)

Nprison(v)

Directed Dominating Set — reduction rules

Neighborhood of one vertex v ∈ V

v
Nexit(v)

Nenter(v)

Nguard(v)

Nprison(v)

Directed Dominating Set — reduction rules

Neighborhood of one vertex v ∈ V

v
Nexit(v)

Nenter(v)

Nguard(v)

Nprison(v)

Directed Dominating Set — reduction rules

Neighborhood of one vertex v ∈ V

v
Nexit(v)

Nenter(v)

Nguard(v)

Nprison(v)

Directed Dominating Set — reduction rules

Neighborhood of one vertex v ∈ V

v
Nexit(v)

Nenter(v)

Nguard(v)

Nprison(v)

Reduction rules for Directed Dominating Set

starting rule:

~0-Rule:

if indeg(v) = 0

choose v to belong to the dominating set

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

Reduction rules for Directed Dominating Set

starting rule:

~0-Rule:

if indeg(v) = 0

choose v to belong to the dominating set

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

Reduction rules for Directed Dominating Set

starting rule:

~0-Rule:

if indeg(v) = 0

choose v to belong to the dominating set

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

Reduction rules for Directed Dominating Set

starting rule:

~0-Rule:

if indeg(v) = 0

choose v to belong to the dominating set

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

Reduction rules for Directed Dominating Set

~1-Rule:

if Nprison(v) 6= ∅
then

choose v to belong to the dominating set
i.e., add a gadget

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

...

~r -Rule:
...

Reduction rules for Directed Dominating Set

~1-Rule:

if Nprison(v) 6= ∅

then

choose v to belong to the dominating set
i.e., add a gadget

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

...

~r -Rule:
...

Reduction rules for Directed Dominating Set

~1-Rule:

if Nprison(v) 6= ∅
then

choose v to belong to the dominating set

i.e., add a gadget

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

...

~r -Rule:
...

Reduction rules for Directed Dominating Set

~1-Rule:

if Nprison(v) 6= ∅
then

choose v to belong to the dominating set
i.e., add a gadget

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

...

~r -Rule:
...

Reduction rules for Directed Dominating Set

~1-Rule:

if Nprison(v) 6= ∅
then

choose v to belong to the dominating set
i.e., add a gadget

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

...

~r -Rule:
...

Reduction rules for Directed Dominating Set

~1-Rule:

if Nprison(v) 6= ∅
then

choose v to belong to the dominating set
i.e., add a gadget

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

...

~r -Rule:
...

Reduction rules for Directed Dominating Set

~1-Rule:

if Nprison(v) 6= ∅
then

choose v to belong to the dominating set
i.e., add a gadget

remove Nprison(v) ∪ Nguard(v) ∪ Nenter(v)

...

~r -Rule:
...

Final result for Directed Dominating Set

Theorem

On planar graphs, Directed Dominating Set is
fixed-parameter tractable.

Final result for Directed Dominating Set

Theorem

On planar graphs, Directed Dominating Set is
fixed-parameter tractable.

Conclusion

Dominating Set

Generalization of reduction rules 1, 2 to r

Hierarchy of the rules, reduction scheme

Running time O(n2r) for r -Rule

Directed Dominating Set

Reduction scheme

fixed-parameter tractable on planar graphs

Conclusion

Dominating Set

Generalization of reduction rules 1, 2 to r

Hierarchy of the rules, reduction scheme

Running time O(n2r) for r -Rule

Directed Dominating Set

Reduction scheme

fixed-parameter tractable on planar graphs

Conclusion

Dominating Set

Generalization of reduction rules 1, 2 to r

Hierarchy of the rules, reduction scheme

Running time O(n2r) for r -Rule

Directed Dominating Set

Reduction scheme

fixed-parameter tractable on planar graphs

Conclusion

Dominating Set

Generalization of reduction rules 1, 2 to r

Hierarchy of the rules, reduction scheme

Running time O(n2r) for r -Rule

Directed Dominating Set

Reduction scheme

fixed-parameter tractable on planar graphs

Conclusion

Dominating Set

Generalization of reduction rules 1, 2 to r

Hierarchy of the rules, reduction scheme

Running time O(n2r) for r -Rule

Directed Dominating Set

Reduction scheme

fixed-parameter tractable on planar graphs

Conclusion

Dominating Set

Generalization of reduction rules 1, 2 to r

Hierarchy of the rules, reduction scheme

Running time O(n2r) for r -Rule

Directed Dominating Set

Reduction scheme

fixed-parameter tractable on planar graphs

Open questions

Order of application of the rules

Characterization of not reducible graphs

Effectiveness of rules vs. running time

Running times in practice

Open questions

Order of application of the rules

Characterization of not reducible graphs

Effectiveness of rules vs. running time

Running times in practice

Open questions

Order of application of the rules

Characterization of not reducible graphs

Effectiveness of rules vs. running time

Running times in practice

Open questions

Order of application of the rules

Characterization of not reducible graphs

Effectiveness of rules vs. running time

Running times in practice

