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Problem P is fixed-parameter tractable
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P is solvable in O(f (k) · nc) time
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such that
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Nexit(v): vertices possessing neighbors outside of N[v ]

Nguard(v): neighbors of exit-vertices in N(v)
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Reduction rules

Rule 1

if Nprison(v) 6= ∅
then

choose v to belong to the dominating set
(add “gadget vertex”)

remove Nguard(v) ∪ Nprison(v)
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Reduction rules

u v

gadget
Rule 2

case 3



generalizing the rules for r vertices

u1
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u3

c
e
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a
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y

subsets of {u1, u2, u3}
W =
{{u1, u2}, {u1, u3}, {u1, u2, u3}}
Compactification:

Ŵ = {{u1, u2}, {u1, u3}}

alternatives

Walt =
W ∪ {{a, d}, {b, d}, {c , d},
{x , a, d}, {u2, a}, . . . }
Compactification:

Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}
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Ŵ = {{u1, u2}, {u1, u3}}

alternatives

Walt =
W ∪ {{a, d}, {b, d}, {c , d},
{x , a, d}, {u2, a}, . . . }
Compactification:
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Ŵalt = {{u1, u2}, {u1, u3}, {a, d},
{a, e}, {b, d}, {b, e}, {c , d}, {c , e},
{u2, a}, {u2, b}, {u3, a}, {u3, b}}

Rule r
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