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Outline

• Introduction to fault tolerance
• Replication for fault tolerance
• Group communication for replication
• Implementation of group communication

Practical issues

Theoretical issues
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Introduction

• Computer systems become every day more complex
• Probability of faults increases
• Need to develop techniques to achieve fault tolerance
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Introduction (2)

Fault tolerant techniques developed over the year

• Transactions (all or nothing property)
• Checkpointing (prevents state loss)
• Replication (masks faults)
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Transactions

• ACID properties (Atomicity, Consistency, Isolation, 
Durability)

begin-transaction
remove (100, account-1)
deposit (100, account-2)

end-transaction

Crash during the transaction: rollback to the state before the 
beginning of the transaction

account-1 account-2

site 1 site 2
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Checkpointing

Crash of p1: rollback of p1 to the latest saved state

chkpt chkpt

chkpt

chkpt

X
crash

p1

p3

p2



SOFSEM 2006 André Schiper 7

Replication

• Crash of s1 is masked to the client
• Upon recovery of s1: state transfer to bring s1 up-to-date

s1

s2

s3

client

replicated server

request

response
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Introduction to FT (6)

Comparison of the three techniques 
• Only replication masks crashes (i.e., ensures high 

availability)
• Transactions and checkpointing: progress is only possible 

after recovery of the crashed process

We will concentrate on replication
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Outline

• Introduction to fault tolerance
• Replication for fault tolerance
• Group communication for replication
• Implementation of group communication
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Context

Replication in the general context of client-server interaction:

c s
request

response

serverclients
(several)
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Context (2)

• Fault tolerance by replicating the server

c
s2

request

response

s3

s1

clients
(several)

server s 
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Correctness criterion: linearizability

• Need to keep the replica consistent
• Consistency defined in terms of the operations executed by 

the clients 

ci

cj

S1

S2

S3

op

op
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Correctness criterion: linearizability (2)

Example:
• Server: FIFO queue
• Operations: enqueue/dequeue
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Correctness criterion: linearizability (3)

Example 1

p

q
execution σ

execution τ

enq(a)

enq(b)

deq( )

deq( )

b

a

linearizable execution
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Correctness criterion: linearizability (4)

Example 2

p

q

enq(a)

enq(b)

deq( )

deq( )

b

a

non linearizable execution
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Replication techniques

Two main replication techniques for linearizability

• Primary-backup replication (or  passive replication)
• Active replication (or  state machine replication)
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Primary-backup replication

client

S1 ⎯ primary

S2 ⎯ backup

S3 ⎯ backup

request

update

response
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Primary-backup replication

• Crash cases

client

S1 ⎯ primary

S2 ⎯ backup

S3 ⎯ backup

request

update

response

1 2 3
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Primary-backup replication (3)

• Crash detection usually based on time-outs
• Time-outs may lead to incorrectly suspect the crash of a 

process
• The technique must work correctly even if processes are 

incorrectly suspected to have crashed
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Active replication

client

S1

S2

S3

request response

wait for the first reply

Crash of a server replica transparent to the client
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Active replication (2) 

• If more than one client, the requests must be received by 
all the replicas in the same order

• Ensured by a communication primitive called total order 
broadcast (or atomic broadcast)

• Complexity of active replication hidden in the 
implementation this primitive

S1

S3

C

C’

S2
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Outline

• Introduction to fault tolerance
• Replication for fault tolerance
• Group communication for replication
• Implementation of group communication
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Role of group communication

• Active replication: requires communication primitive that 
orders client requests 

• Passive replication: have shown the issues to be addressed
• Group communication: communication infrastructure that 

provides solutions to these problems  

Replication technique

Group communication

Transport layer
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Role of group communication (2)

Let g be a group with members p, q, r
• multicast(g, m): allows m to be  multicast to g without 

knowing the membership of g
• IP-multicast (UDP) also provides such a feature
• Group communication provides stronger guarantees 

(reliability, order, etc.)
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Role of group communication (3)

We will discuss:

• Group communication for active replication
• Group communication for passive replication
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Atomic broadcast for active replication

Group communication primitive for active replication:
• atomic broadcast (denoted sometimes abcast)
• also called total order broadcast

Replication technique

Group communication

Transport layer

abcast (g, m) adeliver (m)

receive (m)send (m) to p
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Atomic broadcast for active replication (2)

S1

S3

C

C’

S2

abcast(gS, req)

abcast(gS, req’)

group gS
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Atomic broadcast: specification 

• If p executes abcast(g, m) and does not crash, then all 
processes in g eventually adeliver m 

• If some process in g adelivers m and does not crash, then 
all processes in g that do not crash eventually adeliver m

• If p, q in g adeliver m and m’, then they adeliver them in 
the same order
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Role of group communication (3)

We will discuss:

• Group communication for active replication
• Group communication for passive replication
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Generic broadcast for passive replication

• Atomic broadcast can also be used to implement passive 
replication

• Better solution: generic broadcast
• Same spec as atomic broadcast, except that not all 

messages are ordered:
– Generic broadcast based on a conflict relation on the messages
– Conflicting messages are ordered, non conflicting messages are not 

ordered
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Generic broadcast for passive replication (2)

• Two types of messages:
– Update
– PrimaryChange: issued if a process suspects the current 

primary 
Upon delivery: cyclic permutation of process list
New primary: process at the head of the process list

• Conflict relation:

conflictconflictUpdate

conflictno conflictPrimaryChange

UpdatePrimaryChange
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Generic broadcast for passive replication (3)

client

S1 ⎯ primary

S2 ⎯ backup

S3 ⎯ backup

request

Update

PrimaryChange



SOFSEM 2006 André Schiper 33

Generic broadcast for passive replication (4)

Another way to view the strategy:
• Replicas numbered  0 .. n-1
• Computation divided into rounds
• In round r, the primary is the process with number r mod n
• When process p suspects the primary of round r, it 

broadcasts newRound (= primaryChange)

conflictconflictUpdate

conflictno conflictnewRound

UpdatenewRoundConflict relation

All processes deliver Update in the same round
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Other group communication issues

To discuss:
• Static vs. dynamic group
• Crash-stop vs. crash-recovery model
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Static vs. dynamic groups

• Static group: group whose membership does not change 
during the lifetime of the system

• A static group is sometimes too limitative from a practical 
point of view: may want to replace a crashed replica with a 
new replica

• Dynamic group: group whose membership changes during 
the lifetime of the system

• Dynamic group requires to address two problems:
– How to add / remove processes from the group (group membership 

problem)
– Semantics of communication primitives
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Group membership problem

• Need to distinguish
– (1) group 
– (2) membership of the group at time t

• New notion: view of group g defined by: (i, s)
– i identifies the view
– s: membership of view i    (set of processes)
– membership i also denoted vi
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Group membership problem (2)

Changing the membership of a group:
• add (g, p): for adding p to group g
• remove (g, p): for removing p from group g

Usual requirement: all the members of a group see the same 
sequence of views:

if (i, sp) the view i of p
and (i, sq) the view i of q
then sp = sq
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Process recovery

• Usual theoretical model: crash-stop 
– processes do not have access to stable storage (disk)
– if a process crashes, its whole state is lost (i.e. no recovery 

possible)

• Drawback of the static crash-stop model: if non null crash 
probability, eventually all processes will have crashed

• Drawback of the dynamic crash-stop model: not tolerant to 
catastrophic failures (crash of all the processes in a group)

• To tolerate catastrophic failures: crash-recovery model
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Combining the different GC models

Combining static/dynamic with crash-stop/crash-recovery:

1. Static groups in the crash-stop model
Considered in most theoretical papers

2. Dynamic groups in the crash-stop model 
Considered in most existing GC systems

3. Static groups in the crash-recovery model
4. Dynamic groups in the crash-recovery model
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Quorum systems vs. group communication

• Quorum system: context of read/write operations
• Typical situation:

– Access a majority of replicas to perform a read 
operation

– Access a majority of replicas to perform a write 
operation
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Quorum systems vs. group communication

Example:

• a replicated server managing an integer with read/write 
operations (called  register)

• operation to perform: increment
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Quorum systems vs. group communication (2)

• Solution with quorum system:

• Solution with group communication

client
s1

s2

s3

client
s1

s2

s3

Read

Increment

Write

Increment

Critical section
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Outline

• Introduction to fault tolerance
• Replication for fault tolerance
• Group communication for replication
• Implementation of group communication
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Implementation of group communication

Context:
• Static groups
• Crash-stop model
• Non-malicious processes

• Atomic broadcast
• Generic broadcast

Consensus

Atomic
broadcast

Generic
broadcast

Common denominator: Consensus
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Consensus (informal)

p1

p2

p3

4

7

1

7
7

7
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Consensus (formal)

A set ∏ of processes, each pi ∈ ∏ with an initial value vi

Three properties:

Validity: If a process decides v, then v is the initial value of 
some process

Agreement: No two processes decide differently
Termination: Every process eventually decides some value
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Impossibility result

Asynchronous system:
• No bound on the message transmission delay
• No bound on the process relative speeds

Fischer-Lynch-Paterson impossibility result (1985):
Consensus is not solvable in an asynchronous system with a 

deterministic algorithm and reliable links if one single 
process may crash



SOFSEM 2006 André Schiper 48

Impossibility of atomic broadcast

• By contradiction

p1

p2

p3

4

7

1

7

7

7
Abcast(4)

Abcast(7)

Abcast(1)

Adeliver(7)

Adeliver(7)

Adeliver(7)



SOFSEM 2006 André Schiper 49

Models for solving consensus

Synchronous system:
– There is a known bound on the transmission delay of messages
– There is a known bound on the process relative speeds

Consensus solvable with up to n-1 faulty processes

Drawback: 
• Requires to be pessimistic  (large bounds)
• Large bounds lead to a large blackout period in case of a 

crash
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Models for solving consensus (2)

Partially synchronous system (Dwork, Lynch, Stockmeyer, 1988)

Two variants:
• There is a bound on the transmission delay of messages 

and on the process relative speed, but these bounds are not 
known

• There are known bounds on the transmission delay of 
messages and on the process relative speed, but these 
bounds hold only from some unknown point on.

Consensus solvable with a majority of correct processes
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Models for solving consensus (3)

Failure detector model (Chandra,Toueg, 1995)
• Asynchronous model augmented with an oracle (called 

failure detector) defined by abstract properties

• A failure detector defined by a completeness property and 
an accuracy property

pFDp
r FDr

qFDq

network
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Failure detector model (2)

Example: failure detector 〈〉S
• Strong completeness: eventually every process that crashes 

is permanently suspected to have crashed by every correct 
process

• Eventual weak accuracy: There is a time after which some 
correct process is never suspected by any correct process

Consensus solvable with 〈〉S and a majority of correct 
processes

Drawback: 
• requires reliable links
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RbR model

• Joint work with Bernadette Charron-Bost
• Combinaison of:

– Gafni 1998, Round-by-round failure detectors
(unifies synchronous model and failure detector model)

– Santoro, Widmayer, 1989, Time is not a healer
(show that dynamic faults have the same destructive 
effect on solving consensus as asynchronicity)

• Existing models for solving consensus have put emphasis 
on static faults 

• Our new model handles static faults and dynamic faults in 
the same way
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RbR machine

• Distributed algorithm A on the set Π of processes

• Communication predicate P   on the HO’s
Examples:   P1 :     ∀p ∈ Π, ∀r > 0 :   | HO(p, r) | > n/2

P2 :      ∃ r0, ∃ HO ∈ 2∏, ∀p ∈ Π : HO(p, r0) = HO

• A problem is solved by a pair ( A, P )

In round r, process p receives messages from the set HO(p, r)

st st’

Round   r

p
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Round-by-Round (RbR) model (2)

• Assume q ∉ HO(p, r): in the RbR model, no tentative to 
justify this  (e.g, channel failure, crash of q, send-omission 
failure of q, etc.)

• This removes the difference between static and dynamic
faults (static: crash-stop;  dynamic: channel fault, crash-
recovery)

• In the RbR model, no notion of faulty process
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Consensus algorithms

• A lot ….

• Most influential algorithms:
– Consensus algorithm based on the failure detector 〈〉S  (Chandra-

Toueg, 1995)
– Paxos (Lamport, 1989-1998)
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Consensus algorithms (2)

The CT (Chandra-Toueg) and Paxos algorithms have strong 
similarities but also important differences:

• CT based on rotating coordinator / Paxos based on a 
dynamically chosen leader

• CT requires reliable links / Paxos tolerates lossy links
• The condition for liveness clearly defined in CT 
• The condition for liveness less formally defined in Paxos

(can be formally expressed in the RbR model)
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Paxos in the RbR model
Initialization

xp := vp
votep := V ∪ {?}, initially ?
voteToSendp:=false;  decidedp:=false; tsp:=0

Round r = 4Φ – 3 :
Sr

p :   send  〈xp, tsp〉 to leaderp(Φ)
Tr

p :
if p = leaderp(Φ) and  #〈x, ts〉 rcvd > n/2
then

let θ be the largest θ from 〈v, θ〉 received
votep := one v such that 〈v,θ〉 received
voteToSendp := true

Round r = 4Φ – 2 :
Sr

p :  if p = leaderp(Φ) and voteToSendp then
send  〈votep〉 to all processes

Tr
p :

if received 〈v〉 from leaderp(Φ) then
xp :=  v ;   tsp := Φ

Round r = 4Φ – 1   :
Sr

p :
if tsp = Φ then

send  〈ack〉 to leaderp(Φ)
Tr

p :
if p = leaderp(Φ) and  #〈ack〉 rcvd > n/2
then

DECIDE (votep);  decidedp := true

Round r = 4Φ
Sr

p : 
if p = coordp(Φ) and decidedp then

send  〈votep〉 to all processes
Tr

p :
if received  〈v〉 and not decidedp then

DECIDE(v) );  decidedp := true
voteToSendp := false 

leader
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Paxos (2)

∃Φ0 > 0 :

∀p :  | HO(p, Φ0) | > n/2
and
∀p, q:  leaderp(Φ0) = leaderq(Φ0)

and
leaderp(Φ0) ∈ K(Φ0)

None

CONDITION FOR LIVENESSCONDITION FOR SAFETY

• Kernel of round r:    K (r)  =   ∩ HO (p, r)

• Kernel of a phase Φ :               K(Φ) =   ∩ K (r)
p ∈ Π

∀r ∈ Φ(phase = sequence of rounds)
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Atomic broadcast

• A lot of algorithms published …
• Easy to implement using a sequence of instance of 

consensus
• Consider atomic broadcast within a static group g:

– Consensus within g on a set of messages
– Let consensus #k decide on the set Msg(k)
– Each process delivers the messages in Msg(k) before those in 

Msg(k+1)
– Each process delivers the messages in Msg(k) in a deterministic 

order (e.g., in the order of the message ids)
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Atomic broadcast (2)

Leads to the following algorithm:

• Each process p manages a counter k and a set 
undeliveredMessages

• Upon abcast(m) do broadcast(m)
• Upon reception of m do

– add m to undeliveredMessages
– if no consensus algorithm is running then 

Msg(k) consensus (undeliveredMessages)
deliver messages in Msg(k) in some deterministic order
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Conclusion

• Necessarily superficial presentation of group 
communication

• Comments:
– Static/crash-stop model has reached maturity
– Maturity not yet reached in the other models (static/crash-recovery, 

dynamic/crash-stop, …)
– With the RbR model we hope to bridge the gap between 

static/crash-stop and static/crash-recovery (ongoing 
implementation work)

– More work needed to quantitatively compare the various atomic 
broadcast algorithms (and other algorithms)


