
SOFSEM 2006 André Schiper 1

Group Communication:
from practice to theory

André Schiper
EPFL, Lausanne, Switzerland

SOFSEM 2006 André Schiper 2

Outline

• Introduction to fault tolerance
• Replication for fault tolerance
• Group communication for replication
• Implementation of group communication

Practical issues

Theoretical issues

SOFSEM 2006 André Schiper 3

Introduction

• Computer systems become every day more complex
• Probability of faults increases
• Need to develop techniques to achieve fault tolerance

SOFSEM 2006 André Schiper 4

Introduction (2)

Fault tolerant techniques developed over the year

• Transactions (all or nothing property)
• Checkpointing (prevents state loss)
• Replication (masks faults)

SOFSEM 2006 André Schiper 5

Transactions

• ACID properties (Atomicity, Consistency, Isolation,
Durability)

begin-transaction
remove (100, account-1)
deposit (100, account-2)

end-transaction

Crash during the transaction: rollback to the state before the
beginning of the transaction

account-1 account-2

site 1 site 2

SOFSEM 2006 André Schiper 6

Checkpointing

Crash of p1: rollback of p1 to the latest saved state

chkpt chkpt

chkpt

chkpt

X
crash

p1

p3

p2

SOFSEM 2006 André Schiper 7

Replication

• Crash of s1 is masked to the client
• Upon recovery of s1: state transfer to bring s1 up-to-date

s1

s2

s3

client

replicated server

request

response

SOFSEM 2006 André Schiper 8

Introduction to FT (6)

Comparison of the three techniques
• Only replication masks crashes (i.e., ensures high

availability)
• Transactions and checkpointing: progress is only possible

after recovery of the crashed process

We will concentrate on replication

SOFSEM 2006 André Schiper 9

Outline

• Introduction to fault tolerance
• Replication for fault tolerance
• Group communication for replication
• Implementation of group communication

SOFSEM 2006 André Schiper 10

Context

Replication in the general context of client-server interaction:

c s
request

response

serverclients
(several)

SOFSEM 2006 André Schiper 11

Context (2)

• Fault tolerance by replicating the server

c
s2

request

response

s3

s1

clients
(several)

server s

SOFSEM 2006 André Schiper 12

Correctness criterion: linearizability

• Need to keep the replica consistent
• Consistency defined in terms of the operations executed by

the clients

ci

cj

S1

S2

S3

op

op

SOFSEM 2006 André Schiper 13

Correctness criterion: linearizability (2)

Example:
• Server: FIFO queue
• Operations: enqueue/dequeue

SOFSEM 2006 André Schiper 14

Correctness criterion: linearizability (3)

Example 1

p

q
execution σ

execution τ

enq(a)

enq(b)

deq()

deq()

b

a

linearizable execution

SOFSEM 2006 André Schiper 15

Correctness criterion: linearizability (4)

Example 2

p

q

enq(a)

enq(b)

deq()

deq()

b

a

non linearizable execution

SOFSEM 2006 André Schiper 16

Replication techniques

Two main replication techniques for linearizability

• Primary-backup replication (or passive replication)
• Active replication (or state machine replication)

SOFSEM 2006 André Schiper 17

Primary-backup replication

client

S1 ⎯ primary

S2 ⎯ backup

S3 ⎯ backup

request

update

response

SOFSEM 2006 André Schiper 18

Primary-backup replication

• Crash cases

client

S1 ⎯ primary

S2 ⎯ backup

S3 ⎯ backup

request

update

response

1 2 3

SOFSEM 2006 André Schiper 19

Primary-backup replication (3)

• Crash detection usually based on time-outs
• Time-outs may lead to incorrectly suspect the crash of a

process
• The technique must work correctly even if processes are

incorrectly suspected to have crashed

SOFSEM 2006 André Schiper 20

Active replication

client

S1

S2

S3

request response

wait for the first reply

Crash of a server replica transparent to the client

SOFSEM 2006 André Schiper 21

Active replication (2)

• If more than one client, the requests must be received by
all the replicas in the same order

• Ensured by a communication primitive called total order
broadcast (or atomic broadcast)

• Complexity of active replication hidden in the
implementation this primitive

S1

S3

C

C’

S2

SOFSEM 2006 André Schiper 22

Outline

• Introduction to fault tolerance
• Replication for fault tolerance
• Group communication for replication
• Implementation of group communication

SOFSEM 2006 André Schiper 23

Role of group communication

• Active replication: requires communication primitive that
orders client requests

• Passive replication: have shown the issues to be addressed
• Group communication: communication infrastructure that

provides solutions to these problems

Replication technique

Group communication

Transport layer

SOFSEM 2006 André Schiper 24

Role of group communication (2)

Let g be a group with members p, q, r
• multicast(g, m): allows m to be multicast to g without

knowing the membership of g
• IP-multicast (UDP) also provides such a feature
• Group communication provides stronger guarantees

(reliability, order, etc.)

SOFSEM 2006 André Schiper 25

Role of group communication (3)

We will discuss:

• Group communication for active replication
• Group communication for passive replication

SOFSEM 2006 André Schiper 26

Atomic broadcast for active replication

Group communication primitive for active replication:
• atomic broadcast (denoted sometimes abcast)
• also called total order broadcast

Replication technique

Group communication

Transport layer

abcast (g, m) adeliver (m)

receive (m)send (m) to p

SOFSEM 2006 André Schiper 27

Atomic broadcast for active replication (2)

S1

S3

C

C’

S2

abcast(gS, req)

abcast(gS, req’)

group gS

SOFSEM 2006 André Schiper 28

Atomic broadcast: specification

• If p executes abcast(g, m) and does not crash, then all
processes in g eventually adeliver m

• If some process in g adelivers m and does not crash, then
all processes in g that do not crash eventually adeliver m

• If p, q in g adeliver m and m’, then they adeliver them in
the same order

SOFSEM 2006 André Schiper 29

Role of group communication (3)

We will discuss:

• Group communication for active replication
• Group communication for passive replication

SOFSEM 2006 André Schiper 30

Generic broadcast for passive replication

• Atomic broadcast can also be used to implement passive
replication

• Better solution: generic broadcast
• Same spec as atomic broadcast, except that not all

messages are ordered:
– Generic broadcast based on a conflict relation on the messages
– Conflicting messages are ordered, non conflicting messages are not

ordered

SOFSEM 2006 André Schiper 31

Generic broadcast for passive replication (2)

• Two types of messages:
– Update
– PrimaryChange: issued if a process suspects the current

primary
Upon delivery: cyclic permutation of process list
New primary: process at the head of the process list

• Conflict relation:

conflictconflictUpdate

conflictno conflictPrimaryChange

UpdatePrimaryChange

SOFSEM 2006 André Schiper 32

Generic broadcast for passive replication (3)

client

S1 ⎯ primary

S2 ⎯ backup

S3 ⎯ backup

request

Update

PrimaryChange

SOFSEM 2006 André Schiper 33

Generic broadcast for passive replication (4)

Another way to view the strategy:
• Replicas numbered 0 .. n-1
• Computation divided into rounds
• In round r, the primary is the process with number r mod n
• When process p suspects the primary of round r, it

broadcasts newRound (= primaryChange)

conflictconflictUpdate

conflictno conflictnewRound

UpdatenewRoundConflict relation

All processes deliver Update in the same round

SOFSEM 2006 André Schiper 34

Other group communication issues

To discuss:
• Static vs. dynamic group
• Crash-stop vs. crash-recovery model

SOFSEM 2006 André Schiper 35

Static vs. dynamic groups

• Static group: group whose membership does not change
during the lifetime of the system

• A static group is sometimes too limitative from a practical
point of view: may want to replace a crashed replica with a
new replica

• Dynamic group: group whose membership changes during
the lifetime of the system

• Dynamic group requires to address two problems:
– How to add / remove processes from the group (group membership

problem)
– Semantics of communication primitives

SOFSEM 2006 André Schiper 36

Group membership problem

• Need to distinguish
– (1) group
– (2) membership of the group at time t

• New notion: view of group g defined by: (i, s)
– i identifies the view
– s: membership of view i (set of processes)
– membership i also denoted vi

SOFSEM 2006 André Schiper 37

Group membership problem (2)

Changing the membership of a group:
• add (g, p): for adding p to group g
• remove (g, p): for removing p from group g

Usual requirement: all the members of a group see the same
sequence of views:

if (i, sp) the view i of p
and (i, sq) the view i of q
then sp = sq

SOFSEM 2006 André Schiper 38

Process recovery

• Usual theoretical model: crash-stop
– processes do not have access to stable storage (disk)
– if a process crashes, its whole state is lost (i.e. no recovery

possible)

• Drawback of the static crash-stop model: if non null crash
probability, eventually all processes will have crashed

• Drawback of the dynamic crash-stop model: not tolerant to
catastrophic failures (crash of all the processes in a group)

• To tolerate catastrophic failures: crash-recovery model

SOFSEM 2006 André Schiper 39

Combining the different GC models

Combining static/dynamic with crash-stop/crash-recovery:

1. Static groups in the crash-stop model
Considered in most theoretical papers

2. Dynamic groups in the crash-stop model
Considered in most existing GC systems

3. Static groups in the crash-recovery model
4. Dynamic groups in the crash-recovery model

SOFSEM 2006 André Schiper 40

Quorum systems vs. group communication

• Quorum system: context of read/write operations
• Typical situation:

– Access a majority of replicas to perform a read
operation

– Access a majority of replicas to perform a write
operation

SOFSEM 2006 André Schiper 41

Quorum systems vs. group communication

Example:

• a replicated server managing an integer with read/write
operations (called register)

• operation to perform: increment

SOFSEM 2006 André Schiper 42

Quorum systems vs. group communication (2)

• Solution with quorum system:

• Solution with group communication

client
s1

s2

s3

client
s1

s2

s3

Read

Increment

Write

Increment

Critical section

SOFSEM 2006 André Schiper 43

Outline

• Introduction to fault tolerance
• Replication for fault tolerance
• Group communication for replication
• Implementation of group communication

SOFSEM 2006 André Schiper 44

Implementation of group communication

Context:
• Static groups
• Crash-stop model
• Non-malicious processes

• Atomic broadcast
• Generic broadcast

Consensus

Atomic
broadcast

Generic
broadcast

Common denominator: Consensus

SOFSEM 2006 André Schiper 45

Consensus (informal)

p1

p2

p3

4

7

1

7
7

7

SOFSEM 2006 André Schiper 46

Consensus (formal)

A set ∏ of processes, each pi ∈ ∏ with an initial value vi

Three properties:

Validity: If a process decides v, then v is the initial value of
some process

Agreement: No two processes decide differently
Termination: Every process eventually decides some value

SOFSEM 2006 André Schiper 47

Impossibility result

Asynchronous system:
• No bound on the message transmission delay
• No bound on the process relative speeds

Fischer-Lynch-Paterson impossibility result (1985):
Consensus is not solvable in an asynchronous system with a

deterministic algorithm and reliable links if one single
process may crash

SOFSEM 2006 André Schiper 48

Impossibility of atomic broadcast

• By contradiction

p1

p2

p3

4

7

1

7

7

7
Abcast(4)

Abcast(7)

Abcast(1)

Adeliver(7)

Adeliver(7)

Adeliver(7)

SOFSEM 2006 André Schiper 49

Models for solving consensus

Synchronous system:
– There is a known bound on the transmission delay of messages
– There is a known bound on the process relative speeds

Consensus solvable with up to n-1 faulty processes

Drawback:
• Requires to be pessimistic (large bounds)
• Large bounds lead to a large blackout period in case of a

crash

SOFSEM 2006 André Schiper 50

Models for solving consensus (2)

Partially synchronous system (Dwork, Lynch, Stockmeyer, 1988)

Two variants:
• There is a bound on the transmission delay of messages

and on the process relative speed, but these bounds are not
known

• There are known bounds on the transmission delay of
messages and on the process relative speed, but these
bounds hold only from some unknown point on.

Consensus solvable with a majority of correct processes

SOFSEM 2006 André Schiper 51

Models for solving consensus (3)

Failure detector model (Chandra,Toueg, 1995)
• Asynchronous model augmented with an oracle (called

failure detector) defined by abstract properties

• A failure detector defined by a completeness property and
an accuracy property

pFDp
r FDr

qFDq

network

SOFSEM 2006 André Schiper 52

Failure detector model (2)

Example: failure detector 〈〉S
• Strong completeness: eventually every process that crashes

is permanently suspected to have crashed by every correct
process

• Eventual weak accuracy: There is a time after which some
correct process is never suspected by any correct process

Consensus solvable with 〈〉S and a majority of correct
processes

Drawback:
• requires reliable links

SOFSEM 2006 André Schiper 53

RbR model

• Joint work with Bernadette Charron-Bost
• Combinaison of:

– Gafni 1998, Round-by-round failure detectors
(unifies synchronous model and failure detector model)

– Santoro, Widmayer, 1989, Time is not a healer
(show that dynamic faults have the same destructive
effect on solving consensus as asynchronicity)

• Existing models for solving consensus have put emphasis
on static faults

• Our new model handles static faults and dynamic faults in
the same way

SOFSEM 2006 André Schiper 54

RbR machine

• Distributed algorithm A on the set Π of processes

• Communication predicate P on the HO’s
Examples: P1 : ∀p ∈ Π, ∀r > 0 : | HO(p, r) | > n/2

P2 : ∃ r0, ∃ HO ∈ 2∏, ∀p ∈ Π : HO(p, r0) = HO

• A problem is solved by a pair (A, P)

In round r, process p receives messages from the set HO(p, r)

st st’

Round r

p

SOFSEM 2006 André Schiper 55

Round-by-Round (RbR) model (2)

• Assume q ∉ HO(p, r): in the RbR model, no tentative to
justify this (e.g, channel failure, crash of q, send-omission
failure of q, etc.)

• This removes the difference between static and dynamic
faults (static: crash-stop; dynamic: channel fault, crash-
recovery)

• In the RbR model, no notion of faulty process

SOFSEM 2006 André Schiper 56

Consensus algorithms

• A lot ….

• Most influential algorithms:
– Consensus algorithm based on the failure detector 〈〉S (Chandra-

Toueg, 1995)
– Paxos (Lamport, 1989-1998)

SOFSEM 2006 André Schiper 57

Consensus algorithms (2)

The CT (Chandra-Toueg) and Paxos algorithms have strong
similarities but also important differences:

• CT based on rotating coordinator / Paxos based on a
dynamically chosen leader

• CT requires reliable links / Paxos tolerates lossy links
• The condition for liveness clearly defined in CT
• The condition for liveness less formally defined in Paxos

(can be formally expressed in the RbR model)

SOFSEM 2006 André Schiper 58

Paxos in the RbR model
Initialization

xp := vp
votep := V ∪ {?}, initially ?
voteToSendp:=false; decidedp:=false; tsp:=0

Round r = 4Φ – 3 :
Sr

p : send 〈xp, tsp〉 to leaderp(Φ)
Tr

p :
if p = leaderp(Φ) and #〈x, ts〉 rcvd > n/2
then

let θ be the largest θ from 〈v, θ〉 received
votep := one v such that 〈v,θ〉 received
voteToSendp := true

Round r = 4Φ – 2 :
Sr

p : if p = leaderp(Φ) and voteToSendp then
send 〈votep〉 to all processes

Tr
p :

if received 〈v〉 from leaderp(Φ) then
xp := v ; tsp := Φ

Round r = 4Φ – 1 :
Sr

p :
if tsp = Φ then

send 〈ack〉 to leaderp(Φ)
Tr

p :
if p = leaderp(Φ) and #〈ack〉 rcvd > n/2
then

DECIDE (votep); decidedp := true

Round r = 4Φ
Sr

p :
if p = coordp(Φ) and decidedp then

send 〈votep〉 to all processes
Tr

p :
if received 〈v〉 and not decidedp then

DECIDE(v)); decidedp := true
voteToSendp := false

leader

SOFSEM 2006 André Schiper 59

Paxos (2)

∃Φ0 > 0 :

∀p : | HO(p, Φ0) | > n/2
and
∀p, q: leaderp(Φ0) = leaderq(Φ0)

and
leaderp(Φ0) ∈ K(Φ0)

None

CONDITION FOR LIVENESSCONDITION FOR SAFETY

• Kernel of round r: K (r) = ∩ HO (p, r)

• Kernel of a phase Φ : K(Φ) = ∩ K (r)
p ∈ Π

∀r ∈ Φ(phase = sequence of rounds)

SOFSEM 2006 André Schiper 60

Atomic broadcast

• A lot of algorithms published …
• Easy to implement using a sequence of instance of

consensus
• Consider atomic broadcast within a static group g:

– Consensus within g on a set of messages
– Let consensus #k decide on the set Msg(k)
– Each process delivers the messages in Msg(k) before those in

Msg(k+1)
– Each process delivers the messages in Msg(k) in a deterministic

order (e.g., in the order of the message ids)

SOFSEM 2006 André Schiper 61

Atomic broadcast (2)

Leads to the following algorithm:

• Each process p manages a counter k and a set
undeliveredMessages

• Upon abcast(m) do broadcast(m)
• Upon reception of m do

– add m to undeliveredMessages
– if no consensus algorithm is running then

Msg(k) consensus (undeliveredMessages)
deliver messages in Msg(k) in some deterministic order

SOFSEM 2006 André Schiper 62

Conclusion

• Necessarily superficial presentation of group
communication

• Comments:
– Static/crash-stop model has reached maturity
– Maturity not yet reached in the other models (static/crash-recovery,

dynamic/crash-stop, …)
– With the RbR model we hope to bridge the gap between

static/crash-stop and static/crash-recovery (ongoing
implementation work)

– More work needed to quantitatively compare the various atomic
broadcast algorithms (and other algorithms)

