# Building a Fuzzy Transformation System Ginés Moreno

Dep. Computer Science // U. Castilla – La Mancha // Spain

 $32^{nd}$  SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

– p.1/21

### **Outline of the talk**

- Introduction and Aim of the Work.
- Multi-Adjoint Logic Programs.
- Fuzzy Transformation Rules.
- Conclusions and Further Research.

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic.

-p.2/21

#### Introduction and Aim of the Work

The problem: Optimizing fuzzy logic programs by means of Fold/Unfold transformations.

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic.

-p.3/21

- The problem: Optimizing fuzzy logic programs by means of Fold/Unfold transformations.
- Starting point: An extremely flexible fuzzy logic language and our experience on previous functional–logic and fuzzy–logic transformations.

- The problem: Optimizing fuzzy logic programs by means of Fold/Unfold transformations.
- Starting point: An extremely flexible fuzzy logic language and our experience on previous functional–logic and fuzzy–logic transformations.
- **Developed work:** A complete set of fuzzy transformation rules for multi–adjoint logic programs.

 $32^{nd}$  SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

– p.3/21

- The problem: Optimizing fuzzy logic programs by means of Fold/Unfold transformations.
- Starting point: An extremely flexible fuzzy logic language and our experience on previous functional–logic and fuzzy–logic transformations.
- **Developed work:** A complete set of fuzzy transformation rules for multi–adjoint logic programs.
- Results: Strong correctness of the transformation system and gains in efficiency on final programs.

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic.

Introduction and Aim of the Work

PROGRAM TRANSFORMATION BY FOLD/UNFOLD From  $\mathcal{P}_0$  derive a sequence  $\mathcal{P}_1, \ldots, \mathcal{P}_n$ , such that:

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic.

– p.4/21

**Introduction and Aim of the Work** 

**PROGRAM TRANSFORMATION BY FOLD/UNFOLD** From  $\mathcal{P}_0$  derive a sequence  $\mathcal{P}_1, \ldots, \mathcal{P}_n$ , such that:

•  $\mathcal{P}_i$  is obtained from  $\mathcal{P}_{i-1}$  by folding, unfolding, etc...

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic.

– p.4/21

**Introduction and Aim of the Work** 

**PROGRAM TRANSFORMATION BY FOLD/UNFOLD** From  $\mathcal{P}_0$  derive a sequence  $\mathcal{P}_1, \ldots, \mathcal{P}_n$ , such that:

- $\mathcal{P}_i$  is obtained from  $\mathcal{P}_{i-1}$  by folding, unfolding, etc...
- Each  $\mathcal{P}_i$  produces the same outputs than  $\mathcal{P}_0$ .

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic. – p.4/21

**Introduction and Aim of the Work** 

**PROGRAM TRANSFORMATION BY FOLD/UNFOLD** From  $\mathcal{P}_0$  derive a sequence  $\mathcal{P}_1, \ldots, \mathcal{P}_n$ , such that:

- $\mathcal{P}_i$  is obtained from  $\mathcal{P}_{i-1}$  by folding, unfolding, etc...
- Each  $\mathcal{P}_i$  produces the same outputs than  $\mathcal{P}_0$ .
- $\mathcal{P}_n$  "is better" (i.e., it runs faster) than  $\mathcal{P}_0$ .

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic. – p.4/21

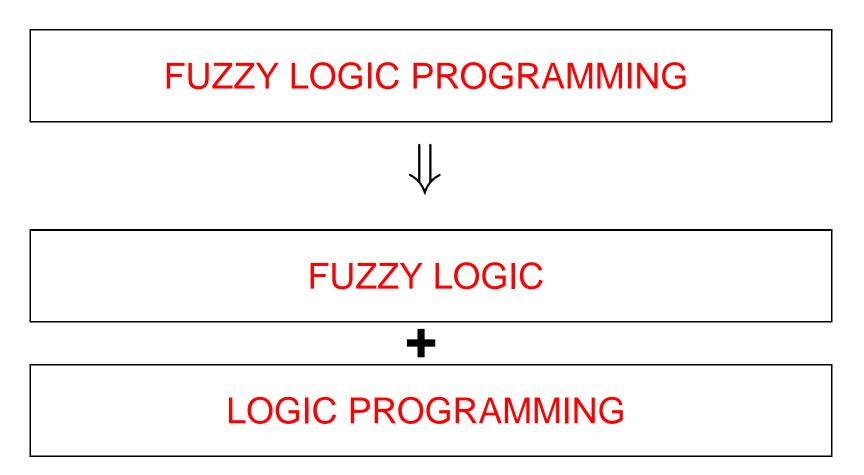
**Introduction and Aim of the Work** 

## FUZZY LOGIC PROGRAMMING

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic. – p.5/21





 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic. – p.5/21

#### **Introduction and Aim of the Work**

 Although there is no an standard language, we have found two major approaches:

 $32^{nd}$  SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

– p.6/21

 Although there is no an standard language, we have found two major approaches:

#### 1. LIKELOG

[Arcelli & Formato-99]

SLD-resolution + FUZZY (similarity) unification

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic.

- p.6/21

 Although there is no an standard language, we have found two major approaches:

1. LIKELOG [Arcelli & Formato-99]

SLD-resolution + FUZZY (similarity) unification

2. f-Prolog [Vojtas & Paulík-96] **FUZZY** SLD-resolution + (syntactic) unification

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic.

 Although there is no an standard language, we have found two major approaches:

1. LIKELOG

[Arcelli & Formato-99]

SLD-resolution + FUZZY (similarity) unification

2. f-Prolog [Vojtas & Paulík-96] **FUZZY** SLD-resolution + (syntactic) unification

Multi-adjoint [Medina & Ojeda-Aciego & Vojtas-01] 

Admissible/Interpretive Computation + (syntactic) unification

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic. – p.6/21

#### Multi-Adjoint Logic Programs

- Let L be a first order language containing: constants variables functions predicates quantifiers:  $\forall, \exists$  connectives:
  - $\&_1, \&_2, \ldots, \&_k$  (conjunctions)  $\vee_1, \vee_2, \ldots, \vee_l$  (disjunctions)  $\leftarrow_1, \leftarrow_2, \ldots, \leftarrow_m$  (implications)  $@_1, @_2, \dots, @_n$  (aggregations)

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic. – p.7/21

#### Multi-Adjoint Logic Programs

- Let L be a first order language containing: constants variables functions predicates quantifiers:  $\forall$ ,  $\exists$  connectives:
  - $\&_1, \&_2, \ldots, \&_k$  (conjunctions)  $\vee_1, \vee_2, \ldots, \vee_l$  (disjunctions)  $\leftarrow_1, \leftarrow_2, \ldots, \leftarrow_m$  (implications)  $@_1, @_2, \dots, @_n$  (aggregations)
- $\mathcal{L}$  also contains values  $r \in L$  of a multi-adjoint lattice,  $(L, \leq, \leftarrow_1, \&_1, \ldots, \leftarrow_n, \&_n)$ . For instance,  $\langle [\mathbf{0},\mathbf{1}], \preceq, \leftarrow_{\mathbf{luka}}, \&_{\mathbf{luka}}, \leftarrow_{\mathbf{prod}}, \&_{\mathbf{prod}}, \leftarrow_{\mathbf{G}}, \&_{\mathbf{G}} \rangle$

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic. – p.7/21

#### **Multi-Adjoint Logic Programs**

**SYNTAX:** A program rule is  $\mathbf{A} \leftarrow_{\mathbf{i}} \mathcal{B}$  with  $\alpha$ • where  $\alpha \in L$  is the truth degree of the rule

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic.

- p.8/21

#### **Multi-Adjoint Logic Programs**

**SYNTAX:** A program rule is  $\mathbf{A} \leftarrow_{\mathbf{i}} \mathcal{B}$  with  $\alpha$ • where  $\alpha \in L$  is the truth degree of the rule

| $\mathcal{R}_1: p(X)$   | $\leftarrow$ prod   | $q(X,Y)\&_{G} r(Y);$ | with | 0.8 |
|-------------------------|---------------------|----------------------|------|-----|
| $\mathcal{R}_2: q(a,Y)$ | $\leftarrow$ prod   | s(Y);                | with | 0.7 |
| $\mathcal{R}_3: q(Y,a)$ | $\leftarrow$ luka   | r(Y);                | with | 0.8 |
| $\mathcal{R}_4: r(Y)$   | $\leftarrow$ luka ; |                      | with | 0.6 |
| $\mathcal{R}_5:s(b)$    | $\leftarrow$ luka ; |                      | with | 0.9 |

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic.

#### **Multi-Adjoint Logic Programs**

- SYNTAX: A program rule is  $A \leftarrow_i \mathcal{B}$  with  $\alpha$ where  $\alpha \in L$  is the truth degree of the rule
  - $q(X,Y)\&_{\mathbf{G}} r(Y);$ with  $\mathcal{R}_1: p(X)$ 0.8  $\leftarrow$ prod  $\mathcal{R}_2: q(a, Y) \leftarrow_{prod} s(Y);$ with 0.7 $\mathcal{R}_3: q(Y, a) \leftarrow_{\texttt{luka}}$ r(Y);with 0.8  $\mathcal{R}_4: r(Y) \quad \leftarrow_{\texttt{luka}};$ with 0.6  $\mathcal{R}_5: s(b) \qquad \leftarrow_{\texttt{luka}};$ with 0.9
- INPUT (goal): Expression similar to the body of a program rule. For instance,  $\leftarrow p(X) \&_{G} r(a)$

 $32^{nd}$  SOFSEM Conference.

January 21-27, 2006. Mei

Merin, Czech Republic.

#### **Multi-Adjoint Logic Programs**

• **STATE** : Is a pair with form  $\langle goal; substitution \rangle$ 

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic.

– p.9/21

#### **Multi-Adjoint Logic Programs**

- **STATE** : Is a pair with form  $\langle goal; substitution \rangle$
- OUTPUT (fuzzy computed answer): Is a (final) state of the form (*truth\_degree*; *substitution*)

 $32^{nd}$  SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

– p.9/21

#### **Multi-Adjoint Logic Programs**

- **STATE** : Is a pair with form  $\langle goal; substitution \rangle$
- OUTPUT (fuzzy computed answer): Is a (final) state of the form (*truth\_degree*; *substitution*)
- PROCEDURAL SEMANTICS: Operational phase: Admissible steps  $(\rightarrow_{AS})$ Interpretive phase: Interpretive steps  $(\rightarrow_{IS})$

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic.

– p.9/21

#### Multi-Adjoint Logic Programs

- **STATE** : Is a pair with form  $\langle goal; substitution \rangle$
- OUTPUT (fuzzy computed answer): Is a (final) state of the form (*truth\_degree*; *substitution*)
- PROCEDURAL SEMANTICS: Operational phase: Admissible steps  $(\rightarrow_{AS})$ Interpretive phase: Interpretive steps  $(\rightarrow_{IS})$
- Given a program  $\mathcal{P}$ , goal  $\mathcal{Q}$  and substitution  $\sigma$ , we define an STATE TRANSITION SYSTEM whose transition relations are  $\rightarrow_{AS}$  and  $\rightarrow_{IS}$

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic. – p.9/21

**Multi-Adjoint Logic Programs** 

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

– p.10/21

#### Multi-Adjoint Logic Programs

# ADMISSIBLE STEP OF KIND $\rightarrow_{AS1}$ $\langle \mathcal{Q}[A]; \sigma \rangle \rightarrow_{AS1} \langle (\mathcal{Q}[A/v\&_i\mathcal{B}])\theta; \sigma\theta \rangle$ if (1) A is the selected atom in Q, (2) $\theta = mgu(\{A' = A\}),$ (3) $A' \leftarrow_i \mathcal{B}$ with v in $\mathcal{P}$ and $\mathcal{B}$ is not empty.

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic. – p.10/21

#### Multi-Adjoint Logic Programs

ADMISSIBLE STEP OF KIND  $\rightarrow_{AS1}$  $\langle \mathcal{Q}[A]; \sigma \rangle \rightarrow_{AS1} \langle (\mathcal{Q}[A/v\&_i\mathcal{B}])\theta; \sigma\theta \rangle$  if (1) A is the selected atom in Q, (2)  $\theta = mgu(\{A' = A\}),$ (3)  $A' \leftarrow_i \mathcal{B}$  with v in  $\mathcal{P}$  and  $\mathcal{B}$  is not empty. **EXAMPLE.** Let  $p(a) \leftarrow_{prod} p(f(a))$  with 0.7 be a rule  $\langle (\mathbf{p}(\mathbf{b})\&_{\mathbf{G}}\mathbf{p}(\mathbf{X}))\&_{\mathbf{G}}\mathbf{q}(\mathbf{X}); \mathbf{id} \rangle \rightarrow AS_{\mathbf{I}}$  $\langle (p(b)\&_{G}0.7\&_{prod}p(f(a)))\&_{G}q(a); \{X/a\} \rangle$ 

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic. – p.10/21

#### Multi-Adjoint Logic Programs

ADMISSIBLE STEP OF KIND  $\rightarrow_{AS2}$  $\langle \mathcal{Q}[A]; \sigma \rangle \rightarrow_{AS2} \langle (\mathcal{Q}[A/v])\theta; \sigma\theta \rangle$  if (1) A is the selected atom in Q, (2)  $\theta = mgu(\{A' = A\}), \text{ and }$ (3)  $A' \leftarrow_i$  with v in  $\mathcal{P}$ .

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic. – p.11/21

Multi-Adjoint Logic Programs

ADMISSIBLE STEP OF KIND  $\rightarrow_{AS2}$  $\langle \mathcal{Q}[A]; \sigma \rangle \rightarrow_{AS2} \langle (\mathcal{Q}[A/v])\theta; \sigma\theta \rangle$  if (1) A is the selected atom in Q, (2)  $\theta = mgu(\{A' = A\}), \text{ and }$ (3)  $A' \leftarrow_i$  with v in  $\mathcal{P}$ .

**EXAMPLE.** Let  $p(a) \leftarrow_{luka}$  with 0.7 be a rule

 $\langle (p(b)\&_{G}p(X))\&_{G}q(X); id \rangle \rightarrow_{AS2}$  $\langle (p(b)\&_{G}0.7)\&_{G}q(a); \{X/a\} \rangle$ 

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic. – p.11/21

**Multi-Adjoint Logic Programs** 

#### INTERPRETIVE STEP $\rightarrow_{IS}$

 $\langle Q[@(r_1, r_2)]; \sigma \rangle \rightarrow_{IS} \langle Q[@(r_1, r_2)/[@](r_1, r_2)]; \sigma \rangle$ 

where  $\llbracket @ \rrbracket$  is the truth function of connective @ in the multi-adjoint lattice associated to  $\mathcal{P}$ 

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

– p.12/21

#### **Multi-Adjoint Logic Programs**

#### INTERPRETIVE STEP $\rightarrow_{IS}$

 $\langle Q[@(r_1, r_2)]; \sigma \rangle \rightarrow_{IS} \langle Q[@(r_1, r_2)/[@](r_1, r_2)]; \sigma \rangle$ 

where  $\llbracket @ \rrbracket$  is the truth function of connective @ in the multi-adjoint lattice associated to  $\mathcal{P}$ 

**EXAMPLE.** Since the truth function associated to  $\&_{prod}$  is the product operator, then

 $\begin{array}{l} \langle (0.8\&_{\texttt{luka}}((0.7\&_{\texttt{prod}}0.9)\&_{\texttt{G}}0.7)); \{X/a\} \rangle & \to_{IS} \\ \langle (0.8\&_{\texttt{luka}}(0.63\&_{\texttt{G}}0.7)); \{X/a\} \rangle \end{array}$ 

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

| $\langle \underline{p(X)} \&_{\mathtt{G}} r(a); id  angle$                                                                                                 | $\rightarrow_{AS1}^{\mathcal{R}_1}$ |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|
| $\langle (0.8\&_{\texttt{prod}}(\underline{q(X_1,Y_1)}\&_{\texttt{G}}r(Y_1)))\&_{\texttt{G}}r(a); \{X/X_1\}\rangle$                                        |                                     |  |  |  |  |
| $\langle (0.8\&_{prod}((0.7\&_{prod}\underline{s(Y_2)})\&_{G}r(Y_2)))\&_{G}r(a); \{X/a, X_1/a, Y_1/Y_2\} \rangle$                                          | $\rightarrow_{AS2}^{\mathcal{R}_5}$ |  |  |  |  |
| $\langle (0.8\&_{prod}((0.7\&_{prod}0.9)\&_{G}\underline{r(b)}))\&_{G}r(a); \{X/a, X_1/a, Y_1/b, Y_2/b\}\rangle$                                           | $\rightarrow_{AS2}^{\mathcal{R}_4}$ |  |  |  |  |
| $\langle (0.8\&_{prod}((0.7\&_{prod}0.9)\&_{G}0.6))\&_{G}r(a); \{X/a, X_1/a, Y_1/b, Y_2/b, Y_3/b\} \rangle$                                                | $\rightarrow_{AS2} \mathcal{R}_4$   |  |  |  |  |
| $\langle (0.8\&_{\texttt{prod}}(\underline{(0.7\&_{\texttt{prod}}0.9)}\&_{\texttt{G}}0.6))\&_{\texttt{G}}0.6; \{X/a, X_1/a, Y_1/b, Y_2/b, Y_3/b\} \rangle$ | $\rightarrow_{IS}$                  |  |  |  |  |
| $\langle (0.8\&_{\texttt{prod}}(\underline{0.63\&_{\texttt{G}}0.6}))\&_{\texttt{G}}0.6; \{X/a, X_1/a, Y_1/b, Y_2/b, Y_3/b\} \rangle$                       | $\rightarrow_{IS}$                  |  |  |  |  |
| $\langle (\underline{0.8\&_{prod}0.6})\&_{\tt G}0.6; \{X/a, X_1/a, Y_1/b, Y_2/b, Y_3/b\} \rangle$                                                          | $\rightarrow_{IS}$                  |  |  |  |  |
| $\langle \underline{0.48\&_{\tt G}0.6}; \{X/a, X_1/a, Y_1/b, Y_2/b, Y_3/b\} \rangle$                                                                       |                                     |  |  |  |  |
| $\langle 0.48; \{X/a, X_1/a, Y_1/b, Y_2/b, Y_3/b\} \rangle$                                                                                                |                                     |  |  |  |  |
| So, the f.c.a (fuzzy computed answer) is $(0.48; \{X/a\})$                                                                                                 |                                     |  |  |  |  |
| 32 <sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic.                                                                            | – p.13/21                           |  |  |  |  |

#### **Fuzzy Transformation Rules**

• Transformation sequence:  $(\mathcal{P}_0, \ldots, \mathcal{P}_k), k \geq 0$ .

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

– p.14/21

#### **Fuzzy Transformation Rules**

- Transformation sequence:  $(\mathcal{P}_0, \ldots, \mathcal{P}_k), k \geq 0$ .
- **DEFINITION INTRODUCTION RULE**

 $\mathcal{P}_{k+1} = \mathcal{P}_k \cup \{ p(\overline{x_n}) \leftarrow \mathcal{B} \text{ with } \alpha = 1 \}$ , where

1) p is *new*, i.e., it does not occur in  $\mathcal{P}_0, \ldots, \mathcal{P}_k$ 2)  $\overline{x_n}$  is the set of variables appearing in  $\mathcal{B}$ 3) other non-variable symbols in  $\mathcal{B}$  belong to  $\mathcal{P}_0$ 

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic. – p.14/21

#### **Fuzzy Transformation Rules**

- Transformation sequence:  $(\mathcal{P}_0, \ldots, \mathcal{P}_k), k \geq 0$ .
- **DEFINITION INTRODUCTION RULE**

 $\mathcal{P}_{k+1} = \mathcal{P}_k \cup \{ \mathbf{p}(\overline{\mathbf{x}_n}) \leftarrow \mathcal{B} \text{ with } \alpha = 1 \} \}$ , where

1) p is *new*, i.e., it does not occur in  $\mathcal{P}_0, \ldots, \mathcal{P}_k$ 2)  $\overline{x_n}$  is the set of variables appearing in  $\mathcal{B}$ 3) other non-variable symbols in  $\mathcal{B}$  belong to  $\mathcal{P}_0$ 

**EXAMPLE:**  $\mathcal{P}_1 = \mathcal{P}_0 \cup \{\mathcal{R}_6\}$  where the "eureka" rule is  $\mathcal{R}_6$ : new(X,Y)  $\leftarrow$  q(X,Y) &<sub>G</sub> r(Y) with  $\alpha = 1$ 

32<sup>nd</sup> SOFSEM Conference.

#### **Fuzzy Transformation Rules**

# **FOLDING RULE**

1) Non-eureka  $\mathcal{R} : (A \leftarrow_i \mathcal{B} \text{ with } \alpha = v) \in \mathcal{P}_k$ 2) Eureka  $\mathcal{R}' : (A' \leftarrow \mathcal{B}' \text{ with } \alpha = 1) \in \mathcal{P}_k$ 3) There exists  $\sigma$  s.t.  $\mathcal{B}'\sigma$  is contained in  $\mathcal{B}$ 

 $\mathcal{P}_{\mathbf{k}+\mathbf{1}} = (\mathcal{P}_{\mathbf{k}} - \{\mathcal{R}\}) \cup \{\mathbf{A} \leftarrow_{\mathbf{i}} \mathcal{B}[\mathcal{B}'\sigma/\mathbf{A}'\sigma] \text{ with } \alpha = \mathbf{v}\}$ 

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic. – p.15/21

# FOLDING RULE

1) Non-eureka  $\mathcal{R} : (A \leftarrow_i \mathcal{B} \text{ with } \alpha = v) \in \mathcal{P}_k$ 2) Eureka  $\mathcal{R}' : (A' \leftarrow \mathcal{B}' \text{ with } \alpha = 1) \in \mathcal{P}_k$ 3) There exists  $\sigma$  s.t.  $\mathcal{B}'\sigma$  is contained in  $\mathcal{B}$ 

 $\mathcal{P}_{\mathbf{k}+\mathbf{1}} = (\mathcal{P}_{\mathbf{k}} - \{\mathcal{R}\}) \cup \{\mathbf{A} \leftarrow_{\mathbf{i}} \mathcal{B}[\mathcal{B}'\sigma/\mathbf{A}'\sigma] \text{ with } \alpha = \mathbf{v}\}$ 

• **EXAMPLE:** Folding rule  $\mathcal{R}_1$  using eureka  $\mathcal{R}_6$ 

 $\begin{array}{ll} \mathcal{R}_1: & p(X) \leftarrow q(X,Y) \&_{\tt G} r(Y) \text{ with } \alpha = 0.8 \\ \mathcal{R}_6: & \texttt{new}(X,Y) \leftarrow q(X,Y) \&_{\tt G} r(Y) \text{ with } \alpha = 1 \end{array}$ 

 $\mathcal{P}_{\mathbf{2}} = (\mathcal{P}_{\mathbf{1}} - \{\mathcal{R}_{\mathbf{1}}\}) \cup \{\mathcal{R}_{\mathbf{7}} : \mathbf{p}(\mathbf{X}) \leftarrow_{\mathtt{prod}} \mathbf{new}(\mathbf{X}, \mathbf{Y}) \text{ with } \alpha = \mathbf{0.8} \}$ 

32<sup>nd</sup> SOFSEM Conference.

**Fuzzy Transformation Rules** 

#### **UNFOLDING RULE**

Let  $\mathcal{R} : (A \leftarrow_i \mathcal{B} \text{ with } \alpha = v) \in \mathcal{P}_k$  $\mathcal{P}_{\mathbf{k}+1} = (\mathcal{P}_{\mathbf{k}} - \{\mathcal{R}\}) \cup$  $\{\mathbf{A}\sigma \leftarrow_{\mathbf{i}} \mathcal{B}' \text{ with } \alpha = \mathbf{v} \mid \langle \mathcal{B}; \mathbf{id} \rangle \rightarrow_{\mathbf{AS}/\mathbf{IS}} \langle \mathcal{B}'; \sigma \rangle \}$ 

 $32^{nd}$  SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic. – p.16/21

**Fuzzy Transformation Rules** 

**UNFOLDING RULE** 

Let  $\mathcal{R} : (A \leftarrow_i \mathcal{B} \text{ with } \alpha = v) \in \mathcal{P}_k$  $\mathcal{P}_{\mathbf{k+1}} = (\mathcal{P}_{\mathbf{k}} - \{\mathcal{R}\}) \cup$ 

 $\{\mathbf{A}\sigma \leftarrow_{\mathbf{i}} \mathcal{B}' \text{ with } \alpha = \mathbf{v} \mid \langle \mathcal{B}; \mathbf{id} \rangle \rightarrow_{\mathbf{AS}/\mathbf{IS}} \langle \mathcal{B}'; \sigma \rangle \}$ 

**EXAMPLE:** To unfold the eureka rule...  $\mathcal{R}_6$ : new(X,Y)  $\leftarrow$  q(X,Y) &<sub>G</sub> r(Y) with  $\alpha = 1$ , then  $\langle q(X, Y)\&_{G}r(Y); id \rangle \rightarrow_{AS1} \mathcal{R}_2 \langle (0.7\&_{prod}s(Y_0))\&_{G}r(Y_0); \{X/a, Y/Y_0\} \rangle$  $\langle q(X, Y)\&_{G}r(Y); id \rangle \rightarrow_{AS1} \mathcal{R}_{3} \langle (0.8\&_{luka}r(Y_{1}))\&_{G}r(a); \{X/Y_{1}, Y/a\} \rangle$ 

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006. Merin, Czech Republic. – p.16/21

•  $\mathcal{P}_3 = (\mathcal{P}_2 - \{\mathcal{R}_6\}) \cup \{\mathcal{R}_8, \mathcal{R}_9\}$  $\mathcal{R}_8 : \operatorname{new}(a, Y_0) \leftarrow ((0.7 \&_{\operatorname{prod}} s(Y_0)) \&_{\operatorname{G}} r(Y_0)) \text{ with } \alpha = 1$  $\mathcal{R}_9 : \operatorname{new}(Y_1, a) \leftarrow ((0.8 \&_{\operatorname{luka}} r(Y_1)) \&_{\operatorname{G}} r(a)) \text{ with } \alpha = 1$ 

 $32^{nd}$  SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

- $\mathcal{P}_{3} = (\mathcal{P}_{2} \{\mathcal{R}_{6}\}) \cup \{\mathcal{R}_{8}, \mathcal{R}_{9}\}$  $\mathcal{R}_{8} : \operatorname{new}(a, Y_{0}) \leftarrow ((0.7 \&_{\operatorname{prod}} s(Y_{0})) \&_{G} r(Y_{0})) \text{ with } \alpha = 1$  $\mathcal{R}_{9} : \operatorname{new}(Y_{1}, a) \leftarrow ((0.8 \&_{\operatorname{luka}} r(Y_{1})) \&_{G} r(a)) \text{ with } \alpha = 1$
- $\mathcal{P}_4 = (\mathcal{P}_3 \{\mathcal{R}_8\}) \cup \{\mathcal{R}_{10}\}$  $\mathcal{R}_{10} : \text{new}(a, b) \leftarrow ((0.7 \&_{\text{prod}} 0.9) \&_{\text{G}} r(Y_0)) \text{ with } \alpha = 1$

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

- $\mathcal{P}_{3} = (\mathcal{P}_{2} \{\mathcal{R}_{6}\}) \cup \{\mathcal{R}_{8}, \mathcal{R}_{9}\}$  $\mathcal{R}_{8} : \operatorname{new}(a, Y_{0}) \leftarrow ((0.7 \&_{\operatorname{prod}} s(Y_{0})) \&_{G} r(Y_{0})) \text{ with } \alpha = 1$  $\mathcal{R}_{9} : \operatorname{new}(Y_{1}, a) \leftarrow ((0.8 \&_{\operatorname{luka}} r(Y_{1})) \&_{G} r(a)) \text{ with } \alpha = 1$
- $\mathcal{P}_4 = (\mathcal{P}_3 \{\mathcal{R}_8\}) \cup \{\mathcal{R}_{10}\}$  $\mathcal{R}_{10} : \texttt{new}(a, b) \leftarrow ((0.7 \&_{\texttt{prod}} 0.9) \&_{\texttt{G}} \texttt{r}(\texttt{Y}_0)) \texttt{ with } \alpha = 1$
- $\mathcal{P}_{5} = (\mathcal{P}_{4} \{\mathcal{R}_{10}\}) \cup \{\mathcal{R}_{11}\}\$  $\mathcal{R}_{11} : \operatorname{new}(a, b) \leftarrow ((0.7 \&_{\operatorname{prod}} 0.9) \&_{G} 0.6) \text{ with } \alpha = 1$

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

- $\mathcal{P}_{3} = (\mathcal{P}_{2} \{\mathcal{R}_{6}\}) \cup \{\mathcal{R}_{8}, \mathcal{R}_{9}\}$  $\mathcal{R}_{8} : \operatorname{new}(a, Y_{0}) \leftarrow ((0.7 \&_{\operatorname{prod}} s(Y_{0})) \&_{G} r(Y_{0})) \text{ with } \alpha = 1$  $\mathcal{R}_{9} : \operatorname{new}(Y_{1}, a) \leftarrow ((0.8 \&_{\operatorname{luka}} r(Y_{1})) \&_{G} r(a)) \text{ with } \alpha = 1$
- $\mathcal{P}_4 = (\mathcal{P}_3 \{\mathcal{R}_8\}) \cup \{\mathcal{R}_{10}\}$  $\mathcal{R}_{10} : \text{new}(a, b) \leftarrow ((0.7 \&_{\text{prod}} 0.9) \&_{\text{G}} r(Y_0)) \text{ with } \alpha = 1$
- $\mathcal{P}_{5} = (\mathcal{P}_{4} \{\mathcal{R}_{10}\}) \cup \{\mathcal{R}_{11}\}\$  $\mathcal{R}_{11} : \operatorname{new}(a, b) \leftarrow ((0.7 \&_{\operatorname{prod}} 0.9) \&_{G} 0.6) \text{ with } \alpha = 1$
- $\mathcal{P}_{6} = (\mathcal{P}_{5} \{\mathcal{R}_{11}\}) \cup \{\mathcal{R}_{12}\}$  $\mathcal{R}_{12} : \operatorname{new}(a, b) \leftarrow (0.63 \&_{G} 0.6) \text{ with } \alpha = 1$

 $32^{nd}$  SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

- $\mathcal{P}_{3} = (\mathcal{P}_{2} \{\mathcal{R}_{6}\}) \cup \{\mathcal{R}_{8}, \mathcal{R}_{9}\}$  $\mathcal{R}_8$  : new(a, Y\_0) \leftarrow ((0.7 \&\_{prod} s(Y\_0)) \&\_G r(Y\_0)) with  $\alpha = 1$  $\mathcal{R}_9$ : new(Y<sub>1</sub>, a)  $\leftarrow$  ((0.8 &<sub>luka</sub> r(Y<sub>1</sub>)) &<sub>G</sub> r(a)) with  $\alpha = 1$
- $\mathcal{P}_4 = (\mathcal{P}_3 \{\mathcal{R}_8\}) \cup \{\mathcal{R}_{10}\}$  $\mathcal{R}_{10}$ : new(a, b)  $\leftarrow$  ((0.7 & prod 0.9) & G r(Y\_0)) with  $\alpha = 1$
- $\mathcal{P}_5 = (\mathcal{P}_4 \{\mathcal{R}_{10}\}) \cup \{\mathcal{R}_{11}\}$  $\mathcal{R}_{11}: new(a, b) \leftarrow ((0.7 \&_{prod} 0.9) \&_{G} 0.6)$  with  $\alpha = 1$
- $\mathcal{P}_6 = (\mathcal{P}_5 \{\mathcal{R}_{11}\}) \cup \{\mathcal{R}_{12}\}$  $\mathcal{R}_{12}$  : new(a, b)  $\leftarrow$  (0.63 &<sub>G</sub> 0.6) with  $\alpha = 1$
- $\mathcal{P}_{7} = (\mathcal{P}_{6} \{\mathcal{R}_{12}\}) \cup \{\mathcal{R}_{13}\}$  $\mathcal{R}_{13}$  : new(a, b)  $\leftarrow$  0.6 with  $\alpha = 1$

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic. – p.17/21

#### **Fuzzy Transformation Rules**

#### **FACTING RULE**

Let  $\mathcal{R} : (A \leftarrow_i r \text{ with } \alpha = v) \in \mathcal{P}_k$  where  $r \in L$ 

 $\mathcal{P}_{\mathbf{k}+\mathbf{1}} = (\mathcal{P}_{\mathbf{k}} - \{\mathcal{R}\}) \cup \{\mathbf{A} \leftarrow \text{ with } \alpha = \llbracket \&_{\mathbf{i}} \rrbracket(\mathbf{v}, \mathbf{r})\}$ 

32<sup>nd</sup> SOFSEM Conference. January 21-27, 2006.

Merin, Czech Republic. – p.18/21

# **FACTING RULE**

Let  $\mathcal{R} : (A \leftarrow_i r \text{ with } \alpha = v) \in \mathcal{P}_k$  where  $r \in L$ 

 $\mathcal{P}_{\mathbf{k}+\mathbf{1}} = (\mathcal{P}_{\mathbf{k}} - \{\mathcal{R}\}) \cup \{\mathbf{A} \leftarrow \text{with } \alpha = \llbracket \&_{\mathbf{i}} \rrbracket(\mathbf{v}, \mathbf{r})\}$ 

**EXAMPLE:** Facting  $\mathcal{R}_{13}$  : new(a, b)  $\leftarrow 0.6$  with  $\alpha = 1$ Remember that [&](1,v) = [&](v,1) = v which implies that [&](1, 0.6) = 0.6, and hence....

 $\mathcal{P}_{\mathbf{8}} = (\mathcal{P}_{\mathbf{7}} - \{\mathcal{R}_{\mathbf{13}}\}) \cup \{\mathcal{R}_{\mathbf{14}} : \mathbf{new}(\mathbf{a}, \mathbf{b}) \leftarrow \text{ with } \alpha = \mathbf{0.6} \}$ 

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic. – p.18/21

**Fuzzy Transformation Rules** 

• Final program  $\mathcal{P}_8 = \{\mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_4, \mathcal{R}_5, \mathcal{R}_7, \mathcal{R}_9, \mathcal{R}_{14}\}$ 

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

– p.19/21

• Final program  $\mathcal{P}_{8} = \{\mathcal{R}_{2}, \mathcal{R}_{3}, \mathcal{R}_{4}, \mathcal{R}_{5}, \mathcal{R}_{7}, \mathcal{R}_{9}, \mathcal{R}_{14}\}$   $\langle \underline{p(X)}\&_{G}r(a); id \rangle \longrightarrow_{AS1}\mathcal{R}_{7}$   $\langle (0.8\&_{prod}\underline{new(X_{1}, Y_{1})})\&_{G}r(a); \{X/X_{1}\} \rangle \longrightarrow_{AS2}\mathcal{R}_{14}$   $\langle (0.8\&_{prod}0.6)\&_{G}\underline{r(a)}; \{X/a, X_{1}/a, Y_{1}/b\} \rangle \longrightarrow_{AS2}\mathcal{R}_{4}$   $\langle (0.8\&_{prod}0.6)\&_{G}0.6; \{X/a, X_{1}/a, Y_{1}/b, Y_{2}/a\} \rangle \longrightarrow_{IS}$   $\langle \underline{0.48\&_{G}0.6}; \{X/a, X_{1}/a, Y_{1}/b, Y_{2}/a\} \rangle \longrightarrow_{IS}$  $\langle 0.48; \{X/a, X_{1}/a, Y_{1}/b, Y_{2}/a\} \rangle$ 

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

- p.19/21

• Final program  $\mathcal{P}_{8} = \{\mathcal{R}_{2}, \mathcal{R}_{3}, \mathcal{R}_{4}, \mathcal{R}_{5}, \mathcal{R}_{7}, \mathcal{R}_{9}, \mathcal{R}_{14}\}$   $\langle \underline{p(X)}\&_{G}r(a); id \rangle \longrightarrow_{AS1}^{\mathcal{R}_{7}}$   $\langle (0.8\&_{prod}\underline{new(X_{1}, Y_{1})})\&_{G}r(a); \{X/X_{1}\} \rangle \longrightarrow_{AS2}^{\mathcal{R}_{14}}$   $\langle (0.8\&_{prod}0.6)\&_{G}\underline{r(a)}; \{X/a, X_{1}/a, Y_{1}/b\} \rangle \longrightarrow_{AS2}^{\mathcal{R}_{4}}$   $\langle (0.8\&_{prod}0.6)\&_{G}0.6; \{X/a, X_{1}/a, Y_{1}/b, Y_{2}/a\} \rangle \longrightarrow_{IS}$   $\langle \underline{0.48\&_{G}0.6; \{X/a, X_{1}/a, Y_{1}/b, Y_{2}/a\}} \rangle \longrightarrow_{IS}$  $\langle 0.48; \{X/a, X_{1}/a, Y_{1}/b, Y_{2}/a\} \rangle$ 

IMPROVEMENT: less derivation steps!!!! In  $\mathcal{P}_0$ : 9 steps (5+4)  $\Rightarrow$  In  $\mathcal{P}_8$ : 5 steps (3+2) ( $\approx$  50%)

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

# THEOREM: Strong Correctness of the Transformation System

Let  $(\mathcal{P}_0, \ldots, \mathcal{P}_k)$  be a transformation sequence such that  $\mathcal{P}_j$  is obtained from  $\mathcal{P}_{j-1}, 0 < j \leq k$ , by definition introduction, folding, unfolding or facting. Then,

$$\langle Q; id \rangle \rightarrow^*_{AS/IS} \langle r; \theta \rangle$$
 in  $\mathcal{P}_0$  iff  
 $\langle Q; id \rangle \rightarrow^*_{AS/IS} \langle r; \theta' \rangle$  in  $\mathcal{P}_k$ 

where  $r \in L$  and  $\theta' = \theta[\mathcal{V}ar(Q)]$ .

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

-p.20/21

# Conclusions

- Fuzzy Logic Programming LANGUAGE: The Multi-Adjoint Logic Programming approach
- Fuzzy (CORRECT) Transformation RULES: Definition intr., folding, unfolding and facting
- Fuzzy (EFFICIENT) Transformation STRATEGY: Generate and "eureka", link/fold it to R<sub>0</sub> and improve its definition by unfolding/facting

# **Future work**

More LANGUAGES: Functional-Fuzzy-Logic,... More RULES: Non reversible folding, abstraction,... More STRATEGIES: Composition, tupling,...

32<sup>nd</sup> SOFSEM Conference.

January 21-27, 2006.

Merin, Czech Republic.

– p.21/21