Building a Fuzzy Transformation System

Ginés Moreno

Dep. Computer Science // U. Castilla - La Mancha // Spain

Building a Fuzzy Transformation System

Outline of the talk

- Introduction and Aim of the Work.
- Multi-Adjoint Logic Programs.
- Fuzzy Transformation Rules.
- Conclusions and Further Research.

Building a Fuzzy Transformation System

Introduction and Aim of the Work

The problem: Optimizing fuzzy logic programs by means of Fold/Unfold transformations.

Building a Fuzzy Transformation System

Introduction and Aim of the Work

The problem: Optimizing fuzzy logic programs by means of Fold/Unfold transformations.

- Starting point: An extremely flexible fuzzy logic language and our experience on previous functional-logic and fuzzy-logic transformations.

Building a Fuzzy Transformation System

Introduction and Aim of the Work

The problem: Optimizing fuzzy logic programs by means of Fold/Unfold transformations.

- Starting point: An extremely flexible fuzzy logic language and our experience on previous functional-logic and fuzzy-logic transformations.
- Developed work: A complete set of fuzzy transformation rules for multi-adjoint logic programs.

Building a Fuzzy Transformation System

Introduction and Aim of the Work

- The problem: Optimizing fuzzy logic programs by means of Fold/Unfold transformations.
- Starting point: An extremely flexible fuzzy logic language and our experience on previous functional-logic and fuzzy-logic transformations.
- Developed work: A complete set of fuzzy transformation rules for multi-adjoint logic programs.
- Results: Strong correctness of the transformation system and gains in efficiency on final programs.

Building a Fuzzy Transformation System

Introduction and Aim of the Work

PROGRAM TRANSFORMATION BY FOLD/UNFOLD

From \mathcal{P}_{0} derive a sequence $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$, such that:

Building a Fuzzy Transformation System

Introduction and Aim of the Work

PROGRAM TRANSFORMATION BY FOLD/UNFOLD From \mathcal{P}_{0} derive a sequence $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$, such that:

- \mathcal{P}_{i} is obtained from \mathcal{P}_{i-1} by folding, unfolding, etc...

Building a Fuzzy Transformation System

Introduction and Aim of the Work

PROGRAM TRANSFORMATION BY FOLD/UNFOLD From \mathcal{P}_{0} derive a sequence $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$, such that:

- \mathcal{P}_{i} is obtained from \mathcal{P}_{i-1} by folding, unfolding, etc...
- Each \mathcal{P}_{i} produces the same outputs than \mathcal{P}_{0}.

Building a Fuzzy Transformation System

Introduction and Aim of the Work

PROGRAM TRANSFORMATION BY FOLD/UNFOLD
 From \mathcal{P}_{0} derive a sequence $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$, such that:

- \mathcal{P}_{i} is obtained from \mathcal{P}_{i-1} by folding, unfolding, etc...
- Each \mathcal{P}_{i} produces the same outputs than \mathcal{P}_{0}.
- \mathcal{P}_{n} "is better" (i.e., it runs faster) than \mathcal{P}_{0}.

Building a Fuzzy Transformation System

Introduction and Aim of the Work

FUZZY LOGIC PROGRAMMING

Building a Fuzzy Transformation System

Introduction and Aim of the Work

FUZZY LOGIC PROGRAMMING

\Downarrow

$+$
LOGIC PROGRAMMING

Building a Fuzzy Transformation System

Introduction and Aim of the Work

- Although there is no an standard language, we have found two major approaches:

Building a Fuzzy Transformation System

Introduction and Aim of the Work

- Although there is no an standard language, we have found two major approaches:

> 1. LIKELOG | [Arcelli \& Formato-99] |
| :--- |
| SLD-resolution + FUZZY (similarity) unification |

Building a Fuzzy Transformation System

Introduction and Aim of the Work

- Although there is no an standard language, we have found two major approaches:

1. LIKELOG [Arcelli \& Formato-99]
2. f-Prolog [Vojtas \& Paulik-96]

FUZZY SLD-resolution + (syntactic) unification

Building a Fuzzy Transformation System

Introduction and Aim of the Work

- Although there is no an standard language, we have found two major approaches:

1. LIKELOG [Arcelli \& Formato-99]

SLD-resolution + FUZZY (similarity) unification
2. f-Prolog [Vojtas \& Paulik-96]

FUZZY SLD-resolution + (syntactic) unification

- Multi-adjoint [Medina \& Ojeda-Aciego \& Vojtas-01]

Admissible/Interpretive Computation + (syntactic) unification

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

Let \mathcal{L} be a first order language containing: constants variables functions predicates quantifiers: \forall, \exists connectives:

$$
\begin{array}{lllll}
\&_{1}, & \&_{2}, & \ldots, & \&_{k} & \text { (conjunctions) } \\
\vee_{1}, & \vee_{2}, & \ldots, & \vee_{l} & \text { (disjunctions) } \\
\leftarrow_{1}, & \leftarrow_{2}, & \ldots, & \leftarrow_{m} & \text { (implications) } \\
@_{1}, & @_{2}, & \ldots, & @_{n} & \text { (aggregations) }
\end{array}
$$

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

- Let \mathcal{L} be a first order language containing: constants variables functions predicates quantifiers: \forall, \exists connectives:

$\&_{1}$,	$\&_{2}$,	\ldots,	$\&_{k}$	(conjunctions)
\vee_{1},	\vee_{2},	\ldots,	\vee_{l}	(disjunctions)
\leftarrow_{1},	\leftarrow_{2},	\ldots,	\leftarrow_{m}	(implications)
$@_{1}$,	$@_{2}$,	\ldots,	$@_{n}$	(aggregations)

- \mathcal{L} also contains values $r \in L$ of a multi-adjoint lattice, $\left\langle L, \preceq, \leftarrow_{1}, \&_{1}, \ldots, \leftarrow_{n}, \&_{n}\right\rangle$. For instance, $\left\langle[\mathbf{0}, \mathbf{1}], \preceq, \leftarrow_{\text {luka }}, \&_{\text {luka }}, \leftarrow_{\text {prod }}, \&_{\text {prod }}, \leftarrow_{\mathbf{G}}, \&_{\mathbf{G}}\right\rangle$

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

- SYNTAX: A program rule is $\mathrm{A} \leftarrow_{i} \mathcal{B}$ with α where $\alpha \in L$ is the truth degree of the rule

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

- SYNTAX: A program rule is $\mathrm{A} \leftarrow_{i} \mathcal{B}$ with α where $\alpha \in L$ is the truth degree of the rule

$$
\begin{array}{lllll}
\mathcal{R}_{1}: p(X) & \leftarrow_{\text {prod }} & q(X, Y) \&_{\mathbf{G}} r(Y) ; & \text { with } & 0.8 \\
\mathcal{R}_{2}: q(a, Y) & \leftarrow_{\text {prod }} & s(Y) ; & \text { with } & 0.7 \\
\mathcal{R}_{3}: q(Y, a) & \leftarrow_{\text {luka }} & r(Y) ; & \text { with } & 0.8 \\
\mathcal{R}_{4}: r(Y) & \leftarrow_{\text {luka } ;} & & \text { with } & 0.6 \\
\mathcal{R}_{5}: s(b) & \leftarrow_{\text {luka }} ; & & \text { with } & 0.9
\end{array}
$$

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

- SYNTAX: A program rule is $\mathrm{A} \leftarrow_{i} \mathcal{B}$ with α where $\alpha \in L$ is the truth degree of the rule

$$
\begin{array}{lllll}
\mathcal{R}_{1}: p(X) & \leftarrow_{\text {prod }} & q(X, Y) \&_{\mathrm{G}} r(Y) ; & \text { with } & 0.8 \\
\mathcal{R}_{2}: q(a, Y) & \leftarrow_{\text {prod }} & s(Y) ; & \text { with } & 0.7 \\
\mathcal{R}_{3}: q(Y, a) & \leftarrow_{\text {luka }} & r(Y) ; & \text { with } & 0.8 \\
\mathcal{R}_{4}: r(Y) & \leftarrow_{\text {luka } ;} & & \text { with } & 0.6 \\
\mathcal{R}_{5}: s(b) & \leftarrow_{\text {luka }} ; & & \text { with } & 0.9
\end{array}
$$

- INPUT (goal): Expression similar to the body of a program rule. For instance, $\leftarrow p(X) \&_{\mathrm{G}} r(a)$

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

STATE : Is a pair with form \langle goal; substitution \rangle

January 21-27, 2006.

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

- STATE : Is a pair with form \langle goal; substitution \rangle
- OUTPUT (fuzzy computed answer): Is a (final) state of the form \langle truth_degree; substitution \rangle

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

- STATE : Is a pair with form \langle goal; substitution \rangle
- OUTPUT (fuzzy computed answer): Is a (final) state of the form \langle truth_degree; substitution \rangle
- PROCEDURAL SEMANTICS:

Operational phase: Admissible steps $\left(\rightarrow_{A S}\right)$ Interpretive phase: Interpretive steps $\left(\rightarrow_{I S}\right)$

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

- STATE : Is a pair with form \langle goal; substitution \rangle
- OUTPUT (fuzzy computed answer): Is a (final) state of the form \langle truth_degree; substitution \rangle
- PROCEDURAL SEMANTICS:

Operational phase: Admissible steps $\left(\rightarrow_{A S}\right)$ Interpretive phase: Interpretive steps $\left(\rightarrow_{I S}\right)$

- Given a program \mathcal{P}, goal \mathcal{Q} and substitution σ, we define an STATE TRANSITION SYSTEM whose transition relations are $\rightarrow_{A S}$ and $\rightarrow_{I S}$

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

ADMISSIBLE STEP OF KIND $\rightarrow_{A S 1}$

$\langle\mathcal{Q}[A] ; \sigma\rangle \rightarrow_{A S 1}\left\langle\left(\mathcal{Q}\left[A / v \&_{i} \mathcal{B}\right]\right) \theta ; \sigma \theta\right\rangle$ if
(1) A is the selected atom in \mathcal{Q},
(2) $\theta=\operatorname{mgu}\left(\left\{A^{\prime}=A\right\}\right)$,
(3) $A^{\prime} \leftarrow_{i} \mathcal{B}$ with v in \mathcal{P} and \mathcal{B} is not empty.

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

ADMISSIBLE STEP OF KIND $\rightarrow A S 1$

$\langle\mathcal{Q}[A] ; \sigma\rangle \rightarrow_{A S 1}\left\langle\left(\mathcal{Q}\left[A / v \&_{i} \mathcal{B}\right]\right) \theta ; \sigma \theta\right\rangle$ if
(1) A is the selected atom in \mathcal{Q},
(2) $\theta=\operatorname{mgu}\left(\left\{A^{\prime}=A\right\}\right)$,
(3) $A^{\prime} \leftarrow_{i} \mathcal{B}$ with v in \mathcal{P} and \mathcal{B} is not empty.

EXAMPLE. Let $\mathrm{p}(\mathrm{a}) \leftarrow_{\operatorname{prod}} \mathrm{p}(\mathrm{f}(\mathrm{a}))$ with 0.7 be a rule

$$
\begin{aligned}
& \left\langle\left(\mathrm{p}(\mathrm{~b}) \&_{\mathrm{G}} \mathrm{p}(\mathrm{X})\right) \&_{\mathrm{G}} \mathrm{q}(\mathrm{X}) ; \text { id }\right\rangle \rightarrow_{A S 1} \\
& \left\langle\left(\mathrm{p}(\mathrm{~b}) \&_{\mathrm{G}} 0.7 \&_{\mathrm{prod}} \mathrm{p}(\mathrm{f}(\mathrm{a}))\right) \&_{\mathrm{G}} \mathrm{q}(\mathrm{a}) ;\{\mathrm{X} / \mathrm{a}\}\right\rangle
\end{aligned}
$$

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

ADMISSIBLE STEP OF KIND $\rightarrow A S 2$

$\langle\mathcal{Q}[A] ; \sigma\rangle \rightarrow_{A S 2}\langle(\mathcal{Q}[A / v]) \theta ; \sigma \theta\rangle$ if
(1) A is the selected atom in \mathcal{Q},
(2) $\theta=\operatorname{mgu}\left(\left\{A^{\prime}=A\right\}\right)$, and
(3) $A^{\prime} \leftarrow_{i}$ with v in \mathcal{P}.

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

ADMISSIBLE STEP OF KIND $\rightarrow A S 2$

$$
\langle\mathcal{Q}[A] ; \sigma\rangle \rightarrow_{A S 2}\langle(\mathcal{Q}[A / v]) \theta ; \sigma \theta\rangle \text { if }
$$

(1) A is the selected atom in \mathcal{Q},
(2) $\theta=\operatorname{mgu}\left(\left\{A^{\prime}=A\right\}\right)$, and
(3) $A^{\prime} \leftarrow_{i}$ with v in \mathcal{P}.

EXAMPLE. Let $\mathrm{p}(\mathrm{a}) \leftarrow_{\text {luka }}$ with 0.7 be a rule

$$
\begin{aligned}
& \left\langle\left(\mathrm{p}(\mathrm{~b}) \&_{\mathrm{G}}^{\mathrm{p}}(\mathrm{X})\right) \&_{\mathrm{G}} \mathrm{q}(\mathrm{X}) ; \mathrm{id}\right\rangle \rightarrow A S 2 \\
& \left\langle\left(\mathrm{p}(\mathrm{~b}) \&_{\mathrm{G}} 0.7\right) \&_{\mathrm{G}} \mathrm{q}(\mathrm{a}) ;\{\mathrm{X} / \mathrm{a}\}\right\rangle
\end{aligned}
$$

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

INTERPRETIVE STEP $\rightarrow_{I S}$

$\left.\left\langle Q\left[@\left(r_{1}, r_{2}\right)\right] ; \sigma\right\rangle \rightarrow_{I S}\left\langle Q\left[@\left(r_{1}, r_{2}\right) / \llbracket @\right]\left(r_{1}, r_{2}\right)\right] ; \sigma\right\rangle$
where $\llbracket @ \rrbracket$ is the truth function of connective @ in the multi-adjoint lattice associated to \mathcal{P}

Building a Fuzzy Transformation System

Multi-Adjoint Logic Programs

INTERPRETIVE STEP $\rightarrow_{I S}$

$\left.\left\langle Q\left[@\left(r_{1}, r_{2}\right)\right] ; \sigma\right\rangle \rightarrow_{I S}\left\langle Q\left[@\left(r_{1}, r_{2}\right) / \llbracket @\right]\left(r_{1}, r_{2}\right)\right] ; \sigma\right\rangle$
where $\llbracket @ \rrbracket$ is the truth function of connective @ in the multi-adjoint lattice associated to \mathcal{P}

EXAMPLE. Since the truth function associated to $\&_{\text {prod }}$ is the product operator, then
$\left\langle\left(0.8 \&_{\text {luka }}\left(\left(0.7 \&_{\text {prod }} 0.9\right) \&_{\mathrm{G}} 0.7\right)\right) ;\{X / a\}\right\rangle \rightarrow_{I S}$ $\left\langle\left(0.8 \&_{\text {luka }}\left(0.63 \&_{G} 0.7\right)\right) ;\{X / a\}\right\rangle$

Building a Fuzzy Transformation System

$$
\begin{aligned}
& \left\langle\underline{p(X)} \&{ }_{\mathrm{G}} r(a) ; i d\right\rangle \\
& \left\langle\left(0.8 \& \&_{\text {prod }}\left(\underline{q\left(X_{1}, Y_{1}\right)} \&_{G} r\left(Y_{1}\right)\right)\right) \&_{G} r(a) ;\left\{X / X_{1}\right\}\right\rangle \\
& \left\langle\left(0.8 \&_{\text {prod }}\left(\left(0.7 \&_{\operatorname{prod} s\left(Y_{2}\right)}\right) \&{ }_{G} r\left(Y_{2}\right)\right)\right) \&_{\mathrm{G}} r(a) ;\left\{X / a, X_{1} / a, Y_{1} / Y_{2}\right\}\right\rangle \\
& \left\langle\left(0.8 \&_{\text {prod }}\left(\left(0.7 \&_{\text {prod }} 0.9\right) \&_{\mathrm{G}} \underline{r(b)}\right)\right) \&_{\mathrm{G}} r(a) ;\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / b\right\}\right\rangle \quad \rightarrow_{A S 2} \mathcal{R}_{4} \\
& \left\langle\left(0.8 \&_{\text {prod }}\left(\left(0.7 \&_{\text {prod }} 0.9\right) \&_{\mathrm{G}} 0.6\right)\right) \&_{\mathrm{G}} \underline{r(a)} ;\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / b, Y_{3} / b\right\}\right\rangle \quad \rightarrow_{A S 2} \mathcal{R}_{4} \\
& \left\langle\left(0.8 \&_{\text {prod }}\left(\underline{\left(0.7 \&_{\text {prod }} 0.9\right)} \&_{G} 0.6\right)\right) \&_{G} 0.6 ;\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / b, Y_{3} / b\right\}\right\rangle \quad \rightarrow_{I S} \\
& \left\langle\left(0.8 \&_{\operatorname{prod}}\left(\underline{0.63 \&_{\mathrm{G}} 0.6}\right)\right) \&_{\mathrm{G}} 0.6 ;\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / b, Y_{3} / b\right\}\right\rangle \quad \rightarrow_{I S} \\
& \left\langle\left(\underline{\left.0.8 \&{ }_{\text {prod }} 0.6\right)} \&_{\mathrm{G}} 0.6 ;\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / b, Y_{3} / b\right\}\right\rangle\right. \\
& \left\langle\underline{0.48 \&_{\mathrm{G}} 0.6 ;}\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / b, Y_{3} / b\right\}\right\rangle \\
& \rightarrow{ }_{A S 1} \mathcal{R}_{1} \\
& \rightarrow A S 1^{\mathcal{R}_{2}} \\
& \rightarrow A S 2{ }^{\mathcal{R}_{5}} \\
& \rightarrow A S 2{ }^{\mathcal{R}_{4}} \\
& \rightarrow A S 2{ }^{\mathcal{R}_{4}} \\
& \rightarrow I S \\
& \rightarrow I S \\
& \rightarrow I S \\
& \left\langle 0.48 ;\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / b, Y_{3} / b\right\}\right\rangle
\end{aligned}
$$

So, the f.c.a (fuzzy computed answer) is $\langle 0.48 ;\{X / a\}\rangle$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- Transformation sequence: $\left(\mathcal{P}_{0}, \ldots, \mathcal{P}_{k}\right), k \geq 0$.

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- Transformation sequence: $\left(\mathcal{P}_{0}, \ldots, \mathcal{P}_{k}\right), k \geq 0$.
- DEFINITION INTRODUCTION RULE
$\mathcal{P}_{\mathrm{k}+1}=\mathcal{P}_{\mathrm{k}} \cup\left\{\mathrm{p}\left(\overline{\mathrm{x}_{\mathbf{n}}}\right) \leftarrow \mathcal{B}\right.$ with $\left.\alpha=1\right\}$, where

1) p is new, i.e., it does not occur in $\mathcal{P}_{0}, \ldots, \mathcal{P}_{k}$
2) $\overline{x_{n}}$ is the set of variables appearing in \mathcal{B}
3) other non-variable symbols in \mathcal{B} belong to \mathcal{P}_{0}

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- Transformation sequence: $\left(\mathcal{P}_{0}, \ldots, \mathcal{P}_{k}\right), k \geq 0$.
- DEFINITION INTRODUCTION RULE
$\mathcal{P}_{\mathrm{k}+1}=\mathcal{P}_{\mathrm{k}} \cup\left\{\mathrm{p}\left(\overline{\mathrm{x}_{\mathbf{n}}}\right) \leftarrow \mathcal{B}\right.$ with $\left.\alpha=1\right\}$, where

1) p is new, i.e., it does not occur in $\mathcal{P}_{0}, \ldots, \mathcal{P}_{k}$
2) $\overline{x_{n}}$ is the set of variables appearing in \mathcal{B}
3) other non-variable symbols in \mathcal{B} belong to \mathcal{P}_{0}

- EXAMPLE: $\mathcal{P}_{1}=\mathcal{P}_{0} \cup\left\{\mathcal{R}_{6}\right\}$ where the "eureka" rule is $\mathcal{R}_{6}: \operatorname{new}(X, Y) \leftarrow \mathrm{q}(\mathrm{X}, \mathrm{Y}) \&_{\mathrm{G}} \mathrm{r}(\mathrm{Y})$ with $\alpha=1$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- FOLDING RULE

1) Non-eureka $\mathcal{R}:\left(A \leftarrow{ }_{i} \mathcal{B}\right.$ with $\left.\alpha=v\right) \in \mathcal{P}_{k}$
2) Eureka $\mathcal{R}^{\prime}:\left(A^{\prime} \leftarrow \mathcal{B}^{\prime}\right.$ with $\left.\alpha=1\right) \in \mathcal{P}_{k}$
3) There exists σ s.t. $\mathcal{B}^{\prime} \sigma$ is contained in \mathcal{B}

$$
\mathcal{P}_{\mathbf{k}+1}=\left(\mathcal{P}_{\mathbf{k}}-\{\mathcal{R}\}\right) \cup\left\{\mathbf{A} \leftarrow_{\mathrm{i}} \mathcal{B}\left[\mathcal{B}^{\prime} \sigma / \mathbf{A}^{\prime} \sigma\right] \text { with } \alpha=\mathbf{v}\right\}
$$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- FOLDING RULE

1) Non-eureka $\mathcal{R}:\left(A \leftarrow{ }_{i} \mathcal{B}\right.$ with $\left.\alpha=v\right) \in \mathcal{P}_{k}$
2) Eureka $\mathcal{R}^{\prime}:\left(A^{\prime} \leftarrow \mathcal{B}^{\prime}\right.$ with $\left.\alpha=1\right) \in \mathcal{P}_{k}$
3) There exists σ s.t. $\mathcal{B}^{\prime} \sigma$ is contained in \mathcal{B}

$$
\mathcal{P}_{\mathbf{k}+1}=\left(\mathcal{P}_{\mathbf{k}}-\{\mathcal{R}\}\right) \cup\left\{\mathbf{A} \leftarrow_{\mathrm{i}} \mathcal{B}\left[\mathcal{B}^{\prime} \sigma / \mathbf{A}^{\prime} \sigma\right] \text { with } \alpha=\mathbf{v}\right\}
$$

- EXAMPLE: Folding rule \mathcal{R}_{1} using eureka \mathcal{R}_{6}
$\mathcal{R}_{1}: \quad \mathrm{p}(\mathrm{X}) \leftarrow \mathrm{q}(\mathrm{X}, \mathrm{Y}) \&_{\mathrm{G}} \mathrm{r}(\mathrm{Y})$ with $\alpha=0.8$
$\mathcal{R}_{6}: \operatorname{new}(X, Y) \leftarrow \mathrm{q}(\mathrm{X}, \mathrm{Y}) \&_{\mathrm{G}} \mathrm{r}(\mathrm{Y})$ with $\alpha=1$
$\mathcal{P}_{\mathbf{2}}=\left(\mathcal{P}_{\mathbf{1}}-\left\{\mathcal{R}_{1}\right\}\right) \cup\left\{\mathcal{R}_{7}: \mathbf{p}(\mathbf{X}) \leftarrow_{\operatorname{prod}} \operatorname{new}(\mathbf{X}, \mathbf{Y})\right.$ with $\left.\alpha=0.8\right\}$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- UNFOLDING RULE

Let $\mathcal{R}:\left(A \leftarrow_{i} \mathcal{B}\right.$ with $\left.\alpha=v\right) \in \mathcal{P}_{k}$

$$
\mathcal{P}_{\mathbf{k}+\mathbf{1}}=\left(\mathcal{P}_{\mathbf{k}}-\{\mathcal{R}\}\right) \cup
$$

$\left\{\mathbf{A} \sigma \leftarrow_{\mathbf{i}} \mathcal{B}^{\prime}\right.$ with $\left.\alpha=\mathbf{v} \mid\langle\mathcal{B} ; \mathbf{i d}\rangle \rightarrow_{\mathbf{A S} / \mathbf{I S}}\left\langle\mathcal{B}^{\prime} ; \sigma\right\rangle\right\}$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- UNFOLDING RULE

Let $\mathcal{R}:\left(A \leftarrow_{i} \mathcal{B}\right.$ with $\left.\alpha=v\right) \in \mathcal{P}_{k}$

$$
\mathcal{P}_{\mathbf{k}+\mathbf{1}}=\left(\mathcal{P}_{\mathbf{k}}-\{\mathcal{R}\}\right) \cup
$$

$$
\left\{\mathbf{A} \sigma \leftarrow_{\mathbf{i}} \mathcal{B}^{\prime} \text { with } \alpha=\mathbf{v} \mid\langle\mathcal{B} ; \mathbf{i d}\rangle \rightarrow_{\mathbf{A S} / \mathbf{I S}}\left\langle\mathcal{B}^{\prime} ; \sigma\right\rangle\right\}
$$

- EXAMPLE: To unfold the eureka rule...
$\mathcal{R}_{6}: \operatorname{new}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{q}(\mathrm{X}, \mathrm{Y}) \&_{\mathrm{G}} \mathrm{r}(\mathrm{Y})$ with $\alpha=1$, then

$$
\begin{aligned}
& \left\langle\underline{q(X, Y)} \&_{G} r(Y) ; i d\right\rangle \rightarrow_{A S 1} \mathcal{R}_{2}\left\langle\left(0.7 \&_{\operatorname{prod} S}\left(Y_{0}\right)\right) \&_{G} r\left(Y_{0}\right) ;\left\{X / a, Y / Y_{0}\right\}\right\rangle \\
& \left\langle\underline{q(X, Y)} \&_{G} r(Y) ; i d\right\rangle \rightarrow_{A S 1} \mathcal{R}_{3}\left\langle\left(0.8 \&_{\text {luka }} r\left(Y_{1}\right)\right) \&_{G} r(a) ;\left\{X / Y_{1}, Y / a\right\}\right\rangle
\end{aligned}
$$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- $\mathcal{P}_{3}=\left(\mathcal{P}_{\mathbf{2}}-\left\{\mathcal{R}_{6}\right\}\right) \cup\left\{\mathcal{R}_{8}, \mathcal{R}_{\mathbf{9}}\right\}$ $\mathcal{R}_{8}: \operatorname{new}\left(\mathrm{a}, \mathrm{Y}_{0}\right) \leftarrow\left(\left(0.7 \&_{\operatorname{prod}} \mathrm{S}\left(\mathrm{Y}_{0}\right)\right) \&_{\mathrm{G}} \mathrm{r}\left(\mathrm{Y}_{0}\right)\right)$ with $\alpha=1$ $\mathcal{R}_{9}: \operatorname{new}\left(\mathrm{Y}_{1}, \mathrm{a}\right) \leftarrow\left(\left(0.8 \&_{\text {luka }} \mathrm{r}\left(\mathrm{Y}_{1}\right)\right) \&_{\mathrm{G}} \mathrm{r}(\mathrm{a})\right)$ with $\alpha=1$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- $\mathcal{P}_{3}=\left(\mathcal{P}_{2}-\left\{\mathcal{R}_{6}\right\}\right) \cup\left\{\mathcal{R}_{8}, \mathcal{R}_{9}\right\}$
$\mathcal{R}_{8}: \operatorname{new}\left(\mathrm{a}, \mathrm{Y}_{0}\right) \leftarrow\left(\left(0.7 \&_{\operatorname{prod}} \mathrm{S}\left(\mathrm{Y}_{0}\right)\right) \&_{\mathrm{G}} \mathrm{r}\left(\mathrm{Y}_{0}\right)\right)$ with $\alpha=1$ $\mathcal{R}_{9}: \operatorname{new}\left(\mathrm{Y}_{1}, \mathrm{a}\right) \leftarrow\left(\left(0.8 \&_{\text {luka }} \mathrm{r}\left(\mathrm{Y}_{1}\right)\right) \&_{\mathrm{G}} \mathrm{r}(\mathrm{a})\right)$ with $\alpha=1$
- $\mathcal{P}_{4}=\left(\mathcal{P}_{3}-\left\{\mathcal{R}_{8}\right\}\right) \cup\left\{\mathcal{R}_{10}\right\}$ $\mathcal{R}_{10}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow\left(\left(0.7 \&_{\text {prod }} 0.9\right) \&_{\mathrm{G}} \mathrm{r}\left(\mathrm{Y}_{0}\right)\right)$ with $\alpha=1$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- $\mathcal{P}_{3}=\left(\mathcal{P}_{2}-\left\{\mathcal{R}_{6}\right\}\right) \cup\left\{\mathcal{R}_{8}, \mathcal{R}_{9}\right\}$
$\mathcal{R}_{8}: \operatorname{new}\left(\mathrm{a}, \mathrm{Y}_{0}\right) \leftarrow\left(\left(0.7 \&_{\operatorname{prod}} \mathrm{S}\left(\mathrm{Y}_{0}\right)\right) \&_{\mathrm{G}} \mathrm{r}\left(\mathrm{Y}_{0}\right)\right)$ with $\alpha=1$ $\mathcal{R}_{9}: \operatorname{new}\left(\mathrm{Y}_{1}, \mathrm{a}\right) \leftarrow\left(\left(0.8 \&_{\text {luka }} \mathrm{r}\left(\mathrm{Y}_{1}\right)\right) \&_{\mathrm{G}} \mathrm{r}(\mathrm{a})\right)$ with $\alpha=1$
- $\mathcal{P}_{4}=\left(\mathcal{P}_{3}-\left\{\mathcal{R}_{8}\right\}\right) \cup\left\{\mathcal{R}_{10}\right\}$
$\mathcal{R}_{10}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow\left(\left(0.7 \&_{\text {prod }} 0.9\right) \&_{\mathrm{G}} \mathrm{r}\left(\mathrm{Y}_{0}\right)\right)$ with $\alpha=1$
- $\mathcal{P}_{5}=\left(\mathcal{P}_{4}-\left\{\mathcal{R}_{10}\right\}\right) \cup\left\{\mathcal{R}_{11}\right\}$
$\mathcal{R}_{11}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow\left(\left(0.7 \&_{\text {prod }} 0.9\right) \&_{\mathrm{G}} 0.6\right)$ with $\alpha=1$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- $\mathcal{P}_{3}=\left(\mathcal{P}_{2}-\left\{\mathcal{R}_{6}\right\}\right) \cup\left\{\mathcal{R}_{8}, \mathcal{R}_{9}\right\}$
$\mathcal{R}_{8}: \operatorname{new}\left(\mathrm{a}, \mathrm{Y}_{0}\right) \leftarrow\left(\left(0.7 \&_{\operatorname{prod}} \mathrm{S}\left(\mathrm{Y}_{0}\right)\right) \&_{\mathrm{G}} \mathrm{r}\left(\mathrm{Y}_{0}\right)\right)$ with $\alpha=1$ $\mathcal{R}_{9}: \operatorname{new}\left(\mathrm{Y}_{1}, \mathrm{a}\right) \leftarrow\left(\left(0.8 \&_{\text {luka }} \mathrm{r}\left(\mathrm{Y}_{1}\right)\right) \&_{\mathrm{G}} \mathrm{r}(\mathrm{a})\right)$ with $\alpha=1$
- $\mathcal{P}_{4}=\left(\mathcal{P}_{3}-\left\{\mathcal{R}_{8}\right\}\right) \cup\left\{\mathcal{R}_{10}\right\}$
$\mathcal{R}_{10}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow\left(\left(0.7 \&_{\text {prod }} 0.9\right) \&_{\mathrm{G}} \mathrm{r}\left(\mathrm{Y}_{0}\right)\right)$ with $\alpha=1$
- $\mathcal{P}_{5}=\left(\mathcal{P}_{4}-\left\{\mathcal{R}_{10}\right\}\right) \cup\left\{\mathcal{R}_{11}\right\}$
$\mathcal{R}_{11}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow\left(\left(0.7 \&_{\text {prod }} 0.9\right) \&_{\mathrm{G}} 0.6\right)$ with $\alpha=1$
- $\mathcal{P}_{6}=\left(\mathcal{P}_{5}-\left\{\mathcal{R}_{11}\right\}\right) \cup\left\{\mathcal{R}_{12}\right\}$
$\mathcal{R}_{12}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow\left(0.63 \&_{\mathrm{G}} 0.6\right)$ with $\alpha=1$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- $\mathcal{P}_{3}=\left(\mathcal{P}_{2}-\left\{\mathcal{R}_{6}\right\}\right) \cup\left\{\mathcal{R}_{8}, \mathcal{R}_{9}\right\}$
$\mathcal{R}_{8}: \operatorname{new}\left(\mathrm{a}, \mathrm{Y}_{0}\right) \leftarrow\left(\left(0.7 \&_{\operatorname{prod}} \mathrm{S}\left(\mathrm{Y}_{0}\right)\right) \&_{\mathrm{G}} \mathrm{r}\left(\mathrm{Y}_{0}\right)\right)$ with $\alpha=1$
$\mathcal{R}_{9}: \operatorname{new}\left(\mathrm{Y}_{1}, \mathrm{a}\right) \leftarrow\left(\left(0.8 \&_{\text {luka }} \mathrm{r}\left(\mathrm{Y}_{1}\right)\right) \&_{\mathrm{G}} \mathrm{r}(\mathrm{a})\right)$ with $\alpha=1$
- $\mathcal{P}_{4}=\left(\mathcal{P}_{3}-\left\{\mathcal{R}_{8}\right\}\right) \cup\left\{\mathcal{R}_{10}\right\}$
$\mathcal{R}_{10}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow\left(\left(0.7 \&_{\text {prod }} 0.9\right) \&_{\mathrm{G}} \mathrm{r}\left(\mathrm{Y}_{0}\right)\right)$ with $\alpha=1$
- $\mathcal{P}_{5}=\left(\mathcal{P}_{4}-\left\{\mathcal{R}_{10}\right\}\right) \cup\left\{\mathcal{R}_{11}\right\}$
$\mathcal{R}_{11}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow\left(\left(0.7 \&_{\text {prod }} 0.9\right) \&_{\mathrm{G}} 0.6\right)$ with $\alpha=1$
- $\mathcal{P}_{6}=\left(\mathcal{P}_{5}-\left\{\mathcal{R}_{11}\right\}\right) \cup\left\{\mathcal{R}_{12}\right\}$
$\mathcal{R}_{12}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow\left(0.63 \&_{\mathrm{G}} 0.6\right)$ with $\alpha=1$
- $\mathcal{P}_{7}=\left(\mathcal{P}_{6}-\left\{\mathcal{R}_{12}\right\}\right) \cup\left\{\mathcal{R}_{13}\right\}$
$\mathcal{R}_{13}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow 0.6$ with $\alpha=1$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- FACTING RULE

Let $\mathcal{R}:\left(A \leftarrow{ }_{i} r\right.$ with $\left.\alpha=v\right) \in \mathcal{P}_{k}$ where $r \in L$

$$
\mathcal{P}_{\mathbf{k}+1}=\left(\mathcal{P}_{\mathbf{k}}-\{\mathcal{R}\}\right) \cup\left\{\mathbf{A} \leftarrow \text { with } \alpha=\llbracket \&_{\mathbf{i}} \rrbracket(\mathbf{v}, \mathbf{r})\right\}
$$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- FACTING RULE

Let $\mathcal{R}:\left(A \leftarrow{ }_{i} r\right.$ with $\left.\alpha=v\right) \in \mathcal{P}_{k}$ where $r \in L$

$$
\mathcal{P}_{\mathbf{k}+\mathbf{1}}=\left(\mathcal{P}_{\mathbf{k}}-\{\mathcal{R}\}\right) \cup\left\{\mathbf{A} \leftarrow \text { with } \alpha=\llbracket \&_{\mathbf{i}} \rrbracket(\mathbf{v}, \mathbf{r})\right\}
$$

- EXAMPLE: Facting $\mathcal{R}_{13}: \operatorname{new}(\mathrm{a}, \mathrm{b}) \leftarrow 0.6$ with $\alpha=1$

Remember that $\llbracket \& \rrbracket(1, v)=\llbracket \& \rrbracket(v, 1)=v$ which implies that $\llbracket \& \rrbracket(1,0.6)=0.6$, and hence....

$$
\mathcal{P}_{8}=\left(\mathcal{P}_{7}-\left\{\mathcal{R}_{13}\right\}\right) \cup\left\{\mathcal{R}_{14}: \operatorname{new}(\mathbf{a}, \mathbf{b}) \leftarrow \quad \text { with } \alpha=0.6\right\}
$$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

- Final program $\mathcal{P}_{8}=\left\{\mathcal{R}_{2}, \mathcal{R}_{3}, \mathcal{R}_{4}, \mathcal{R}_{5}, \mathcal{R}_{7}, \mathcal{R}_{9}, \mathcal{R}_{14}\right\}$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

Final program $\mathcal{P}_{8}=\left\{\mathcal{R}_{2}, \mathcal{R}_{3}, \mathcal{R}_{4}, \mathcal{R}_{5}, \mathcal{R}_{7}, \mathcal{R}_{9}, \mathcal{R}_{14}\right\}$
$\left\langle\underline{p(X)} \&_{\mathbf{G}} r(a) ; i d\right\rangle$
$\left\langle\left(0.8 \&_{\text {prod }} \underline{n e w}\left(X_{1}, Y_{1}\right)\right) \&_{G} r(a) ;\left\{X / X_{1}\right\}\right\rangle$ $\left\langle\left(0.8 \&_{\text {prod }} 0.6\right) \&_{\mathrm{G}} r(a) ;\left\{X / a, X_{1} / a, Y_{1} / b\right\}\right\rangle$ $\rightarrow A S 1{ }^{\mathcal{R}_{7}}$ $\rightarrow A S 2^{\mathcal{R}_{14}}$
$\left\langle\left(0.8 \&_{\text {prod }} 0.6\right) \&_{\mathrm{G}} 0.6 ;\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / a\right\}\right\rangle \rightarrow_{I S}$
$\left\langle\underline{0.48 \&_{\mathrm{G}} 0.6 ;}\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / a\right\}\right\rangle$
\rightarrow IS

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

Final program $\mathcal{P}_{8}=\left\{\mathcal{R}_{2}, \mathcal{R}_{3}, \mathcal{R}_{4}, \mathcal{R}_{5}, \mathcal{R}_{7}, \mathcal{R}_{9}, \mathcal{R}_{14}\right\}$
$\left\langle\underline{p(X)} \&_{\mathbf{G}} r(a) ; i d\right\rangle$
$\left\langle\left(0.8 \&_{\text {prod }} n e w\left(X_{1}, Y_{1}\right)\right) \&_{G} r(a) ;\left\{X / X_{1}\right\}\right\rangle$ $\left\langle\left(0.8 \&_{\text {prod }} 0.6\right) \&_{\mathrm{G}} r(a) ;\left\{X / a, X_{1} / a, Y_{1} / b\right\}\right\rangle$ $\rightarrow A S 1{ }^{\mathcal{R}_{7}}$ $\rightarrow A S 2^{\mathcal{R}_{14}}$
$\rightarrow A S 2^{\mathcal{R}_{4}}$
$\left\langle\left(0.8 \&_{\text {prod }} 0.6\right) \&_{\mathrm{G}} 0.6 ;\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / a\right\}\right\rangle$
$\rightarrow I S$
$\left\langle\underline{0.48 \&_{\mathrm{G}} 0.6 ;}\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / a\right\}\right\rangle$
\rightarrow IS
$\left\langle 0.48 ;\left\{X / a, X_{1} / a, Y_{1} / b, Y_{2} / a\right\}\right\rangle$

IMPROVEMENT: less derivation steps!!!!

In \mathcal{P}_{0} : 9 steps $(5+4) \Rightarrow \operatorname{In} \mathcal{P}_{8}: 5$ steps $(3+2)(\approx 50 \%)$

Building a Fuzzy Transformation System

Fuzzy Transformation Rules

THEOREM: Strong Correctness of the Transformation System

Let $\left(\mathcal{P}_{0}, \ldots, \mathcal{P}_{k}\right)$ be a transformation sequence such that \mathcal{P}_{j} is obtained from $\mathcal{P}_{j-1}, 0<j \leq k$, by definition introduction, folding, unfolding or facting. Then,

$$
\begin{aligned}
\langle Q ; i d\rangle & \rightarrow_{A S / I S}^{*}\langle r ; \theta\rangle \text { in } \mathcal{P}_{0} \text { iff } \\
\langle Q ; i d\rangle & \rightarrow_{A S / I S}^{*}\left\langle r ; \theta^{\prime}\right\rangle \text { in } \mathcal{P}_{k}
\end{aligned}
$$

where $r \in L$ and $\theta^{\prime}=\theta[\operatorname{Var}(Q)]$.

Building a Fuzzy Transformation System

Conclusions

- Fuzzy Logic Programming LANGUAGE:

The Multi-Adjoint Logic Programming approach

- Fuzzy (CORRECT) Transformation RULES:

Definition intr., folding, unfolding and facting

- Fuzzy (EFFICIENT) Transformation STRATEGY:

Generate and "eureka", link/fold it to \mathcal{R}_{0} and improve its definition by unfolding/facting

Future work
More LANGUAGES: Functional-Fuzzy-Logic,... More RULES: Non reversible folding, abstraction,... More STRATEGIES: Composition, tupling,...

