Constructing

Interference-Minimal Networks

Marc Benkert, Karlsruhe University Joachim Gudmundsson, Nicta Sydney Herman Haverkort, TU Eindhoven Alexander Wolff, Karlsruhe University

January, 2006

< ≣⇒ ≣

Overview

2

3

Introduction

- Motivation
- What is interference?
- Properties

Exact interference

ComputeEdgeSetFulfillsProperty

Estimated interference

- Definition
- ComputeEdgeSet
- FulfillsProperty

Introduction Motivation Exact interference Estimated interference **Properties**

What is interference?

Overview

Introduction

- Motivation
- What is interference?
- Properties

- ComputeEdgeSet
- FulfillsProperty

- ComputeEdgeSet
- FulfillsProperty

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Setting up communication networks

< 回
 < =
 < =

 < =
 < =

Motivation What is interference? Properties

Setting up communication networks

<

Motivation What is interference? Properties

Setting up communication networks

<

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Setting up communication networks

< 回
 < 回

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Setting up communication networks

< 回
 < =
 < =

 < =
 < =

Motivation What is interference? Properties

Setting up communication networks

<

Motivation What is interference? Properties

Setting up communication networks

< 回
 < =
 < =

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Setting up communication networks

Motivation What is interference? Properties

Definition of interference

[Burkhart et al., 2004]

Motivation What is interference? Properties

Definition of interference

[Burkhart et al., 2004]

Motivation What is interference? Properties

Definition of interference

[Burkhart et al., 2004]

Motivation What is interference? Properties

Definition of interference

[Burkhart et al., 2004]

Motivation What is interference? Properties

Definition of interference

[Burkhart et al., 2004]

• $S(e) := D(u, |uv|) \cup D(v, |uv|).$

Motivation What is interference? Properties

Definition of interference

[Burkhart et al., 2004]

•
$$S(e) := D(u, |uv|) \cup D(v, |uv|).$$

• $Int(e) := |V \cap S(e)| - 2.$

Motivation What is interference? Properties

Definition of interference

[Burkhart et al., 2004]

- $S(e) := D(u, |uv|) \cup D(v, |uv|).$
- $Int(e) := |V \cap S(e)| 2.$
- G = (V, E) communication graph. Int(G) := max_{$e \in E$} Int(e).

∢ ≣ ≯

э

Motivation What is interference? Properties

Properties of graphs that we construct

connectivity

< 177 ▶

< ≣⇒

Motivation What is interference? Properties

Properties of graphs that we construct

t-spanner

<日 <日 <日 <日

Motivation What is interference? Properties

Properties of graphs that we construct

t-spanner

<日 <日 <日 <日

Motivation What is interference? Properties

Properties of graphs that we construct

t-spanner

<日 <日 <日 <日

Motivation What is interference? Properties

Properties of graphs that we construct

d-hop network

< A >

< ≣⇒

Introduction Motivation Exact interference What is int Estimated interference Properties

Motivation What is interference? Properties

Properties of graphs that we construct

d-hop network

Introduction Motivat Exact interference What is Estimated interference Propert

Motivation What is interference? Properties

Properties of graphs that we construct

d-hop network

Introduction Motivation Exact interference What is interference? Estimated interference Properties

Previous results

 Circular range searching [M93] ⇒ interference values of all edges in O(n^{9/4} polylog n) time.
Previous results

 Circular range searching [M93] ⇒ interference values of all edges in O(n^{9/4} polylog n) time.

Previous results

 Circular range searching [M93] ⇒ interference values of all edges in O(n^{9/4} polylog n) time.

Previous results

- Circular range searching [M93] \implies interference values of all edges in $O(n^{\frac{9}{4}}$ polylog n) time.
- Interference-minimal t-spanner
 - Burkhart et al., 2004
 - Moaveni-Nejad and Li, 2004
 - Our observation: CRS + binary search $O(n^{\frac{9}{4}}$ polylog n) exp.

-≣⇒

 $O(n^4)$

 $O(n^3 \log n)$

Previous results

- Circular range searching [M93] ⇒ interference values of all edges in O(n^{9/4} polylog n) time.
- Interference-minimal t-spanner
 - Burkhart et al., 2004
 - Moaveni-Nejad and Li, 2004
 - Our observation: CRS + binary search $O(n^{\frac{9}{4}}$ polylog n) exp.
- ! All interference values were known a priori.

Ξ.

 $O(n^4)$

 $O(n^3 \log n)$

Our approach

•
$$E_{\ell} := \{ e \mid \mathsf{Int}(e) \le \ell \}, \ G_{\ell} = (V, E_{\ell}).$$

Our approach

- $E_{\ell} := \{e \mid Int(e) \le \ell\}, G_{\ell} = (V, E_{\ell}).$
- *k* the smallest integer such that G_k has property \mathcal{P} .

Our approach

- $E_{\ell} := \{e \mid Int(e) \le \ell\}, G_{\ell} = (V, E_{\ell}).$
- *k* the smallest integer such that G_k has property \mathcal{P} .
- Our aim: Faster algorithms for small values of *k*.

Our approach

- $E_{\ell} := \{ e \mid Int(e) \le \ell \}, G_{\ell} = (V, E_{\ell}).$
- *k* the smallest integer such that G_k has property \mathcal{P} .
- Our aim: Faster algorithms for small values of *k*.
- Our runtime for the *t*-spanner: $O(\log k(nk^2 + n \log n)) \exp$.

Our approach

- $E_{\ell} := \{e \mid \mathsf{Int}(e) \leq \ell\}, \ G_{\ell} = (V, E_{\ell}).$
- *k* the smallest integer such that G_k has property \mathcal{P} .
- Our aim: Faster algorithms for small values of *k*.
- Our runtime for the *t*-spanner: $O(\log k(nk^2 + n \log n)) \exp$.

⇒ better than CRS $O(n^{\frac{9}{4}} \text{polylog } n)$ for $k \in O(n^{\frac{5}{8}})$.

Introduction Motiva Exact interference What i Estimated interference Prope

Motivation What is interference? Properties

Incremental approach (connectivity)

< 回

Motivation What is interference? Properties

Incremental approach (connectivity)

Spheres of edges e with Int(e) = 0.

< 177 ▶

< ≣⇒

Introduction Motiva Exact interference What i Estimated interference Proper

Motivation What is interference? Properties

Incremental approach (connectivity)

ComputeEdgeSet E₀

< ⊡ > < ⊒ >

Introduction Motiva Exact interference What Estimated interference Prope

Motivation What is interference? Properties

Incremental approach (connectivity)

FulfillsProperty \mathcal{P} (connected)?

< 177 ▶

Introduction Mot Exact interference What Estimated interference Pro

Motivation What is interference? Properties

Incremental approach (connectivity)

No.

∢⊡≯ ∢≣≯

Introduction Motiv Exact interference What Estimated interference Prop

Motivation What is interference? Properties

Incremental approach (connectivity)

ComputeEdgeSet E1

< 177 ▶

< ≣⇒

Introduction Motiv Exact interference What Estimated interference Prop

Motivation What is interference? Properties

Incremental approach (connectivity)

FulfillsProperty \mathcal{P} (connected)?

< 177 ▶

Motivation What is interference? Properties

Incremental approach (connectivity)

< ⊡ > < ⊒ >

Introduction Motiv Exact interference What Estimated interference Prope

Motivation What is interference? Properties

Incremental approach (connectivity)

ComputeEdgeSet E2

Introduction Motiv Exact interference What Estimated interference Prope

Motivation What is interference? Properties

Incremental approach (connectivity)

FulfillsProperty \mathcal{P} (connected)?

Introduction Motiv Exact interference What Estimated interference Prop

Motivation What is interference? Properties

Incremental approach (connectivity)

Overall proceeding

Given: Hosts *V* and a graph property \mathcal{P} , n = |V|.

Overall proceeding

Given: Hosts *V* and a graph property \mathcal{P} , n = |V|. Find: *k*, the smallest integer such that G_k has property \mathcal{P} .

What is interference?

Overall proceeding

Given: Hosts V and a graph property \mathcal{P} , n = |V|. Find: k, the smallest integer such that G_k has property \mathcal{P} .

Naive Algorithm

- 1. For $\ell = 0$ to *n* do
- 2. ComputeEdgeSet E_e
- 3. FulfillsProperty G_{ℓ}

k=27, n=128: 0,1,2,3,...,27 \rightarrow O(k) steps.

Overall proceeding

Given: Hosts *V* and a graph property \mathcal{P} , n = |V|. Find: *k*, the smallest integer such that G_k has property \mathcal{P} .

Better Algorithm

- 1. Apply binary search to find k
- 2. ComputeEdgeSet E_{ℓ}
- 3. FulfillsProperty G_{ℓ}

k=27, n=128: 0,128,64,32,16,24,28,26,27 \rightarrow O(log *n*) steps.

What is interference?

Overall proceeding

Given: Hosts *V* and a graph property \mathcal{P} , n = |V|. Find: k, the smallest integer such that G_k has property \mathcal{P} .

Best Algorithm

- 1. Apply exponential and binary search to find k
- 2. ComputeEdgeSet E_l
- 3. FulfillsProperty G_e

 $k=27, n=128: 0, 1, 2, 4, 8, 16, 32, 24, 28, 26, 27 \rightarrow O(\log k)$ steps.

What is interference?

Overall proceeding

Given: Hosts V and a graph property \mathcal{P} , n = |V|. Find: k, the smallest integer such that G_k has property \mathcal{P} .

Best Algorithm

- 1. Apply exponential and binary search to find k
- 2. ComputeEdgeSet E_e
- 3. FulfillsProperty G_e

 $k=27, n=128: 0, 1, 2, 4, 8, 16, 32, 24, 28, 26, 27 \rightarrow O(\log k)$ steps.

It remains to implement ComputeEdgeSet E_{ℓ} and FulfillsProperty G_{ℓ} !

ComputeEdgeSet FulfillsProperty

Overview

2

Introduction

- Motivation
- What is interference?
- Properties

Exact interference

- ComputeEdgeSet
- FulfillsProperty

Estimated interference

- Definition
- ComputeEdgeSet
- FulfillsProperty

ComputeEdgeSet FulfillsProperty

ComputeEdgeSet FulfillsProperty

ComputeEdgeSet FulfillsProperty

ComputeEdgeSet FulfillsProperty

ComputeEdgeSet FulfillsProperty

ComputeEdgeSet E_{ℓ} .

• Order- ℓ Delaunay graph DG_{ℓ}

- Order- ℓ Delaunay graph DG_{ℓ}
- Our edge set $E_{\ell} := \{e \mid \mathsf{Int}(e) \leq \ell\}$

- Order- ℓ Delaunay graph DG_{ℓ}
- Our edge set $E_{\ell} := \{e \mid \mathsf{Int}(e) \leq \ell\}$

- Order- ℓ Delaunay graph DG_{ℓ}
- Our edge set $E_{\ell} := \{e \mid \mathsf{Int}(e) \leq \ell\}$

- Order- ℓ Delaunay graph DG_{ℓ}
- Our edge set $E_{\ell} := \{e \mid \mathsf{Int}(e) \leq \ell\}$

• $D_e \subset S(e) \implies E_\ell \subset DG_\ell.$
ComputeEdgeSet E_{ℓ} .

- Order- ℓ Delaunay graph DG_{ℓ}
- Our edge set $E_{\ell} := \{e \mid \mathsf{Int}(e) \leq \ell\}$

- $D_e \subset S(e) \implies E_\ell \subset DG_\ell.$
- DG_{ℓ} can be computed in $O(n\ell \log \ell + n \log n)$ exp. time. [GHK02]

ComputeEdgeSet E_{ℓ} .

- Order- ℓ Delaunay graph DG_{ℓ}
- Our edge set $E_{\ell} := \{e \mid \mathsf{Int}(e) \leq \ell\}$

- $D_e \subset S(e) \implies E_\ell \subset DG_\ell.$
- DG_{ℓ} can be computed in $O(n\ell \log \ell + n \log n)$ exp. time. [GHK02]
- $|DG_{\ell}| = O(n\ell)$. \implies can compute E_{ℓ} in $O(n\ell^2 + n\log n)$.

ComputeEdgeSet FulfillsProperty

FulfillsProperty G_{ℓ}

Is G_{ℓ} connected?

ComputeEdgeSet FulfillsProperty

FulfillsProperty G_l

Is G_{ℓ} connected?

- breadth first search
- check if all hosts were reached
- O(nℓ) time

ComputeEdgeSet FulfillsProperty

FulfillsProperty G_l

Is G_{ℓ} connected?

- breadth first search
- check if all hosts were reached
- O(nℓ) time

Is G_{ℓ} a *t*-spanner?

FulfillsProperty G_l

Is G_{ℓ} connected?

- breadth first search
- check if all hosts were reached
- O(nℓ) time

Is G_{ℓ} a *t*-spanner?

- all pairs shortest path computation, weight(u, v) = |uv|
- check for all pairs $d_{G_{\ell}}(u, v) \leq t |uv|$
- *n* times Dijkstra's shortest path algorithm $\rightarrow O(n^2(k + \log n))$

FulfillsProperty G_l

Is G_{ℓ} connected?

- breadth first search
- check if all hosts were reached
- O(nℓ) time

Is G_{ℓ} a *t*-spanner?

- all pairs shortest path computation, weight(u, v) = |uv|
- check for all pairs $d_{G_{\ell}}(u, v) \leq t |uv|$
- *n* times Dijkstra's shortest path algorithm $\rightarrow O(n^2(k + \log n))$

Is G_{ℓ} a *d*-hop network?

FulfillsProperty G_l

Is G_{ℓ} connected?

- breadth first search
- check if all hosts were reached
- O(nℓ) time

Is G_{ℓ} a *t*-spanner?

- all pairs shortest path computation, weight(u, v) = |uv|
- check for all pairs $d_{G_{\ell}}(u, v) \leq t |uv|$
- *n* times Dijkstra's shortest path algorithm $\rightarrow O(n^2(k + \log n))$

Is G_{ℓ} a *d*-hop network?

- all pairs shortest path computation, weight(u, v) = 1
- check for all pairs $d_{G_{\ell}}(u, v) \leq d$
- *O*(*n*² log *n*) exp. time [MT87]

◆□ ◆三 ◆三 ● Introduction Defir Exact interference Com Estimated interference Fulfil

Definition ComputeEdgeSet FulfillsProperty

Overview

Introduction

- Motivation
- What is interference?
- Properties

Exact interference

- ComputeEdgeSet
- FulfillsProperty

Estimated interference

Definition

3

- ComputeEdgeSet
- FulfillsProperty

ComputeEdgeSet FulfillsProperty

Definition of estimated interference

ComputeEdgeSet FulfillsProperty

Definition of estimated interference

•
$$S_{\max}(e,\varepsilon) = "(1+\varepsilon) \cdot S(e)"$$

Introduction Def Exact interference Cor Estimated interference Full

Definition ComputeEdgeSet FulfillsProperty

Definition of estimated interference

• $S_{\max}(e,\varepsilon) = "(1+\varepsilon) \cdot S(e)"$ • $S_{\min}(e,\varepsilon) = "(1-\varepsilon) \cdot S(e)"$ Introduction Defin Exact interference Com Estimated interference Fulfi

Definition ComputeEdgeSet FulfillsProperty

Definition of estimated interference

•
$$S_{max}(e, \varepsilon) = "(1 + \varepsilon) \cdot S(e)"$$

• $S_{min}(e, \varepsilon) = "(1 - \varepsilon) \cdot S(e)"$
• Int is an ε -valid *interference estimation* of *e* if

$$|S_{\max}(e,\varepsilon) \cap V| - 2 \ge \tilde{Int} \ge |S_{\min}(e,\varepsilon) \cap V| - 2.$$

 Introduction Definition Exact interference ComputeEdgeSet Estimated interference FulfillsProperty

Well Separated Pair Decomposition

[CK95]

A well-separated pair $\{A, B\}$ of point sets.

Introduction Definition Exact interference ComputeEdgeSet Estimated interference FulfillsProperty

Well Separated Pair Decomposition

[CK95]

A well-separated pair $\{A, B\}$ of point sets.

There is a WSPD $\{A_1, B_1\}, \ldots, \{A_k, B_k\}$ with $k = O(s^2 n)$ well-sep. pairs such that every point pair is separated by exactly one $\{A_i, B_i\}$.

Definition ComputeEdgeSet FulfillsProperty

ComputeEdgeSet E_{ℓ} (estimated!)

Goal: Faster computation than in the exact case. $O(n\ell^2)$

Definition ComputeEdgeSet FulfillsProperty

ComputeEdgeSet E_{ℓ} (estimated!)

Approach: Preprocess ε -valid interference estimations for all edges.

Definition ComputeEdgeSet FulfillsProperty

ComputeEdgeSet E_{ℓ} (estimated!)

Idea: For each $\{A_i, B_i\}$ compute only one $\frac{\varepsilon}{4}$ -valid interference estimations for an arbitrary edge $\{u, v\}$...

Definition ComputeEdgeSet FulfillsProperty

ComputeEdgeSet E_{ℓ} (estimated!)

Idea: For each $\{A_i, B_i\}$ compute only one $\frac{\varepsilon}{4}$ -valid interference estimations for an arbitrary edge $\{u, v\}$... and assign its value to all edges that connect $\{A_i, B_i\}$.

Definition ComputeEdgeSet FulfillsProperty

ComputeEdgeSet E_{ℓ} (estimated!)

Running time: $O(\frac{n}{\varepsilon^2} \cdot (\frac{1}{\varepsilon} + \log n))$ preprocessing. approximate range counting

[AM00]

Definition ComputeEdgeSet FulfillsProperty

ComputeEdgeSet E_{ℓ} (estimated!)

Running time: $O(\frac{n}{\varepsilon^2} \cdot (\frac{1}{\varepsilon} + \log n))$ preprocessing. $\implies O(\frac{n}{\varepsilon^2})$ to compute one E_{ℓ} exact: $O(n\ell^2)$.

Definition ComputeEdgeSet FulfillsProperty

FulfillsProperty G_{ℓ} (estimated)

$$|E_\ell| = O(n^2)$$

 $|E'_{\ell}| = O(\frac{n}{\varepsilon^2})$

Definition ComputeEdgeSet FulfillsProperty

FulfillsProperty G_{ℓ} (estimated)

 $|E_{\ell}| = O(n^2)$ $|E'_{\ell}| = O(\frac{n}{\varepsilon^2})$

• Property testing (connectivity) in $G'_{\ell} = (V, E'_{\ell})$.

Definition ComputeEdgeSet FulfillsProperty

FulfillsProperty G_{ℓ} (estimated)

$$|E_{\ell}| = O(n^2)$$
 $|E_{\ell}'| = O(\frac{n}{\varepsilon^2})$

- Property testing (connectivity) in $G'_{\ell} = (V, E'_{\ell})$.
- **Theorem:** G_ℓ connected $\iff G'_\ell$ connected.

< ≣) ⊒

Definition ComputeEdgeSet FulfillsProperty

FulfillsProperty G_{ℓ} (estimated)

$$|E_{\ell}| = O(n^2)$$
 $|E_{\ell}'| = O(\frac{n}{\varepsilon^2})$

- Property testing (connectivity) in $G'_{\ell} = (V, E'_{\ell})$.
- **Theorem:** G_ℓ connected $\iff G'_\ell$ connected.
- \implies BFS in G'_{ℓ} runs in $O(\frac{n}{\epsilon^2})$ time.

< ≣) ⊒

Introduction	Definition
Exact interference	ComputeEdgeSet
Estimated interference	FulfillsProperty

Tool boxes

Exact case	connectivity	t-spanner	<i>d</i> -hop
CompEdgeSet E_{ℓ}	order- <i>l</i> Delaunay triangulation		
FulfillsProperty G_{ℓ}	BFS	all pairs shortest path	

Estimated case	connectivity	t-spanner	<i>d-</i> hop
CompEdgeSet E'_{ℓ}	Well-separated pair decomposition		
FulfillsProperty G_{ℓ}	BFS	approx.dilation	implicitBFS

Introduction	Definition
Exact interference	ComputeEdgeSet
Estimated interference	FulfillsProperty

Running times

Exact case	connectivity	t-spanner	<i>d</i> -hop
CompEdgeSet E_{ℓ}	$O(n\ell^2 + n\log n)$		
FulfillsProperty <i>G</i> _ℓ	$O(n\ell)$ $O(n^2 \log n)$		

E	stimated case	connectivity	t-spanner	<i>d-</i> hop
	CompEdgeSet E'_{ℓ}	preproc. $O(\frac{n}{\varepsilon^2}[\frac{1}{\varepsilon} + \log n])$, query $O(\frac{n}{\varepsilon^2})$		
	FulfillsProperty G_{ℓ}	$O(\frac{n}{\varepsilon^2})$	$O(\frac{n^2}{\varepsilon^4}\log n)$	$O(\frac{n^2}{\varepsilon^2})$

Challenges

- Find better algorithms for k ∈ Ω(n^{5/8}),
 i.e. faster than O(n^{9/4} polylog n). (CRS)
- Find other desirable properties for communication graphs.