A Polynomial-Time Checkable Sufficient Condition for Deadlock-Freedom of Component-Based Systems

Christoph Minnameier joint work with Mila Majster-Cederbaum & Moritz Martens

Institute for Computer Science, University of Mannheim, Germany

January 21, 2007

Interaction Systems & Deadlocks

Description and Global Behavior of IS Deadlocks in Interaction Systems

The Sufficient Condition

Simplifications Example & Conclusion

The Setting

We build on a model for component based systems presented in [Goessler and Sifakis, Component-based Construction of deadlock-free Systems. In FSTTCS, LNCS 2914, 2003.]

The Setting

- We build on a model for component based systems presented in [Goessler and Sifakis, Component-based Construction of deadlock-free Systems. In FSTTCS, LNCS 2914, 2003.]
- Deadlock-Detection in Component-Based Systems is NP-hard [C. Minnameier. Submitted for publication in *IPL*.]

The Setting

- We build on a model for component based systems presented in [Goessler and Sifakis, Component-based Construction of deadlock-free Systems. In FSTTCS, LNCS 2914, 2003.]
- Deadlock-Detection in Component-Based Systems is NP-hard [C. Minnameier. Submitted for publication in *IPL*.]
- We give a polynomial-time computable sufficient condition for deadlock-freedom.

Description and Global Behavior of IS Deadlocks in Interaction Systems

Part 1: Interaction Systems & Deadlocks

Description and Global Behavior of IS Deadlocks in Interaction Systems

An Interaction System is a Tuple $Sys = (K, \{A_i\}_{i \in K}, C, \{T_i\}_{i \in K})$

• The set of *components* $K = \{1, \ldots, n\}$

Description and Global Behavior of IS Deadlocks in Interaction Systems

- The set of *components* $K = \{1, \ldots, n\}$
- ► The sets of *ports* or *actions* {A_i}_{i∈K} of a component The port sets are pairwise disjoint.

- The set of *components* $K = \{1, \ldots, n\}$
- ► The sets of *ports* or *actions* {A_i}_{i∈K} of a component The port sets are pairwise disjoint.
- The set of connectors C = {c₁,..., c_m} Connectors are sets of actions. A component can participate in a connector with at most one action. Every action of every component has to occur in at least one connector. Connectors are maximal w.r.t. set inclusion.

- The set of *components* $K = \{1, \ldots, n\}$
- ► The sets of *ports* or *actions* {A_i}_{i∈K} of a component The port sets are pairwise disjoint.
- The set of connectors C = {c₁,..., c_m} Connectors are sets of actions. A component can participate in a connector with at most one action. Every action of every component has to occur in at least one connector. Connectors are maximal w.r.t. set inclusion.

 a_1

 e_1

dı

a1

b

dı

e1

- The set of *components* $K = \{1, \ldots, n\}$
- ► The sets of *ports* or *actions* {A_i}_{i∈K} of a component The port sets are pairwise disjoint.
- The set of connectors C = {c₁,..., c_m} Connectors are sets of actions. A component can participate in a connector with at most one action. Every action of every component has to occur in at least one connector. Connectors are maximal w.r.t. set inclusion.
- ► The local (labeled) transition systems {*T_i*}_{*i*∈*K*} Every node has at least one outgoing edge.

Description and Global Behavior of IS Deadlocks in Interaction Systems

Some Components and their Ports

Description and Global Behavior of IS Deadlocks in Interaction Systems

Ports of Components are Connected via Connectors

Description and Global Behavior of IS Deadlocks in Interaction Systems

Ports of Components are Connected via Connectors

M. Majster-Cederbaum, M. Martens, C. Minnameier

Description and Global Behavior of IS Deadlocks in Interaction Systems

Ports of Components are Connected via Connectors

Description and Global Behavior of IS Deadlocks in Interaction Systems

The Global Behavior of a System

Description and Global Behavior of IS Deadlocks in Interaction Systems

The Global Behavior of a System

M. Majster-Cederbaum, M. Martens, C. Minnameier

Description and Global Behavior of IS Deadlocks in Interaction Systems

The Global Behavior of a System

M. Majster-Cederbaum, M. Martens, C. Minnameier Verifying Deadle

Description and Global Behavior of IS Deadlocks in Interaction Systems

The Global Behavior of a System

Description and Global Behavior of IS Deadlocks in Interaction Systems

The Global Behavior of a System

M. Majster-Cederbaum, M. Martens, C. Minnameier

Description and Global Behavior of IS Deadlocks in Interaction Systems

The Global Behavior of a System

Description and Global Behavior of IS Deadlocks in Interaction Systems

The System can never be in Global Deadlock

Description and Global Behavior of IS Deadlocks in Interaction Systems

The System can never be in Global Deadlock

Description and Global Behavior of IS Deadlocks in Interaction Systems

The System can never be in Global Deadlock

Description and Global Behavior of IS Deadlocks in Interaction Systems

But Components $\{1, 2, 4, 5\}$ are in Local Deadlock

M. Majster-Cederbaum, M. Martens, C. Minnameier

Description and Global Behavior of IS Deadlocks in Interaction Systems

But Components $\{1, 2, 4, 5\}$ are in Local Deadlock

M. Majster-Cederbaum, M. Martens, C. Minnameier

Description and Global Behavior of IS Deadlocks in Interaction Systems

But Components $\{1, 2, 4, 5\}$ are in Local Deadlock

M. Majster-Cederbaum, M. Martens, C. Minnameier

Description and Global Behavior of IS Deadlocks in Interaction Systems

But Components $\{1, 2, 4, 5\}$ are in Local Deadlock

Description and Global Behavior of IS Deadlocks in Interaction Systems

But Components $\{1, 2, 4, 5\}$ are in Local Deadlock

M. Majster-Cederbaum, M. Martens, C. Minnameier

Description and Global Behavior of IS Deadlocks in Interaction Systems

A local Deadlock - Successor-Closed Subgraph

$$C = \{\{a_3\}, \{a_1, c_2, c_3, b_4\}, \{a_2, b_5, a_6\}, \{b_1, a_4\}, \{c_4, a_5\}, \{c_4, c_5\}, \{b_2, b_3, c_4, a_6\}\}$$

Local and Global Deadlocks

Let $q = (q_1, \ldots, q_n) \in Q$ be a global state.

We say that some non-empty set $D = \{j_1, j_2, \dots, j_k\} \subseteq K$ of components is in *local deadlock* in q iff

$$\forall i \in D \ \forall c \in C: \ c \cap ea(q_i) \neq \emptyset$$

 $\Rightarrow \exists j \in D \ (c \cap A_j) \not\subseteq ea(q_j)$

Local and Global Deadlocks

Let
$$q=(q_1,\ldots,q_n)\in Q$$
 be a global state.

We say that some non-empty set $D = \{j_1, j_2, \dots, j_k\} \subseteq K$ of components is in *local deadlock* in q iff

$$orall i \in D \ orall c \in \mathcal{C} \colon c \cap \mathit{ea}(q_i)
eq \emptyset \ \Rightarrow \exists j \in D \ (c \cap A_j)
ot \subseteq \mathit{ea}(q_j)$$

In the example $D = \{1, 2, 4, 5\}$ is in local deadlock.

Local and Global Deadlocks

Let
$$q=(q_1,\ldots,q_n)\in Q$$
 be a global state.

We say that some non-empty set $D = \{j_1, j_2, \dots, j_k\} \subseteq K$ of components is in *local deadlock* in q iff

$$orall i \in D \ orall c \in \mathcal{C} \colon c \cap \mathit{ea}(q_i)
eq \emptyset \ \Rightarrow \exists j \in D \ (c \cap A_j)
ot \subseteq \mathit{ea}(q_j)$$

In the example $D = \{1, 2, 4, 5\}$ is in local deadlock.

We call a local deadlock D = K a global deadlock.

Local and Global Deadlocks

Let
$$q=(q_1,\ldots,q_n)\in Q$$
 be a global state.

We say that some non-empty set $D = \{j_1, j_2, \dots, j_k\} \subseteq K$ of components is in *local deadlock* in q iff

$$orall i \in D \ orall c \in \mathcal{C} \colon c \cap \mathit{ea}(q_i)
eq \emptyset \ \Rightarrow \exists j \in D \ (c \cap A_j)
ot \subseteq \mathit{ea}(q_j)$$

In the example $D = \{1, 2, 4, 5\}$ is in local deadlock.

We call a local deadlock D = K a global deadlock.

Deadlock-Detection is NP-hard!

Simplifications Example & Conclusion

Part 2: Proving Deadlock-Freedom in Polynomial Time

Simplifications Example & Conclusion

A Successor-Closed Subgraph implies a Cycle

$$C = \{\{a_3\}, \{a_1, c_2, c_3, b_4\}, \{a_2, b_5, a_6\}, \{b_1, a_4\}, \{c_4, a_5\}, \{c_4, c_5\}, \{b_2, b_3, c_4, a_6\}\}$$

Simplifications Example & Conclusion

A Successor-Closed Subgraph implies a Cycle

No Cylce (in any reachable global state) ⇒ No Deadlock (in any reachable global state)

$$C = \{\{a_3\}, \{a_1, c_2, c_3, b_4\}, \{a_2, b_5, a_6\}, \{b_1, a_4\}, \{c_4, a_5\}, \{c_4, c_5\}, \{b_2, b_3, c_4, a_6\}\}$$

Simplifications Example & Conclusion

A Cycle must have been closed somehow

 Assume there is no cycle in the global starting state (easy to check)

A Cycle must have been closed somehow

- Assume there is no cycle in the global starting state (easy to check)
- Let $q^0 \rightarrow \ldots \rightarrow q^D$ a path in the global transition system such that a cycle occurs in q^D for the first time

A Cycle must have been closed somehow

- Assume there is no cycle in the global starting state (easy to check)
- Let $q^0 \rightarrow \ldots \rightarrow q^D$ a path in the global transition system such that a cycle occurs in q^D for the first time
- Then there has to be a component (namely one that participates in the cycle) that just (properly) changed its local state

A Cycle must have been closed somehow

- Assume there is no cycle in the global starting state (easy to check)
- Let $q^0 \rightarrow \ldots \rightarrow q^D$ a path in the global transition system such that a cycle occurs in q^D for the first time
- Then there has to be a component (namely one that participates in the cycle) that just (properly) changed its local state
- So there has to be a component that just (properly) changed its local state in such a way that:
 - it waits for some component and
 - it is waited for by some component

Simplifications Example & Conclusion

The last global Transition before the Cycle occured

M. Majster-Cederbaum, M. Martens, C. Minnameier

Simplifications Example & Conclusion

A Cycle implies a Closing

$$C = \{\{a_3\}, \{a_1, c_2, c_3, b_4\}, \{a_2, b_5, a_6\}, \{b_1, a_4\}, \{c_4, a_5\}, \{c_4, c_5\}, \{b_2, b_3, c_4, a_6\}\}$$

Simplifications Example & Conclusion

The state where the Cycle occured for the first time.

Simplifications Example & Conclusion

Simplifications Example & Conclusion

Detecting this Closing in the System

Simplifications Example & Conclusion

Detecting this Closing in a Subsystem

The witness of the potential formation of a cycle is still present after restricting the connectors to the action sets of the observed components.

Simplifications Example & Conclusion

Complexity and Parametrization

The Algorithm performs a reachability analysis for each subsystem consisting of 3 components. The number of such subsystems is in O(n³).

Simplifications Example & Conclusion

Complexity and Parametrization

- The Algorithm performs a reachability analysis for each subsystem consisting of 3 components. The number of such subsystems is in O(n³).
- ► Each such subsystem has at most m^3 states, where *m* is the size of a largest local transition system.

Complexity and Parametrization

- ► The Algorithm performs a reachability analysis for each subsystem consisting of 3 components. The number of such subsystems is in O(n³).
- ► Each such subsystem has at most m^3 states, where *m* is the size of a largest local transition system.
- ► To check whether there is a component that performed a proper state change and is now waiting for and waited for takes time O(|C| · m).

Complexity and Parametrization

- The Algorithm performs a reachability analysis for each subsystem consisting of *d* components. The number of such subsystems is in O(n^d).
- Each such subsystem has at most m^d states, where m is the size of a largest local transition system.
- ► To check whether there is a component that performed a proper state change and is now waiting for and waited for takes time O(|C| · m).
- In general, we can observe *d* components at a time in order to minimize the error in our reachability analyses.

Simplifications Example & Conclusion

What is it good for? - A Trilateration System

M. Majster-Cederbaum, M. Martens, C. Minnameier

Simplifications Example & Conclusion

What is it good for? - A Trilateration System

Three components that constitute a triangle may start, perform and end a trilateration cooperation.

M. Majster-Cederbaum, M. Martens, C. Minnameier

Simplifications Example & Conclusion

What is it good for? - A Trilateration System

Three components that constitute a triangle may start, perform and end a trilateration cooperation.

Each component may participate in a communication of one of its surrounding triangles at a time.

M. Majster-Cederbaum, M. Martens, C. Minnameier

Simplifications Example & Conclusion

What is it good for? - A Trilateration System

Three components that constitute a triangle may start, perform and end a trilateration cooperation.

Each component may participate in a communication of one of its surrounding triangles at a time.

This yields a reachable global state space whose size is exponential in n.

M. Majster-Cederbaum, M. Martens, C. Minnameier

Simplifications Example & Conclusion

What is it good for? - A Trilateration System

Three components that constitute a triangle may start, perform and end a trilateration cooperation.

Each component may participate in a communication of one of its surrounding triangles at a time.

This yields a reachable global state space whose size is exponential in n.

Each component may also participate in a maintenance-interaction together with the other components in the same row. \Rightarrow Arbitrarily large connectors.

M. Majster-Cederbaum, M. Martens, C. Minnameier

Simplifications Example & Conclusion

What is it good for? - A Trilateration System

Three components that constitute a triangle may start, perform and end a trilateration cooperation.

Each component may participate in a communication of one of its surrounding triangles at a time.

This yields a reachable global state space whose size is exponential in n.

Each component may also participate in a maintenance-interaction together with the other components in the same row. \Rightarrow Arbitrarily large connectors.

There are (unreachable) global states that contain deadlocks.

M. Majster-Cederbaum, M. Martens, C. Minnameier

Simplifications Example & Conclusion

What is it good for? - A Trilateration System

Three components that constitute a triangle may start, perform and end a trilateration cooperation.

Each component may participate in a communication of one of its surrounding triangles at a time.

This yields a reachable global state space whose size is exponential in n.

Each component may also participate in a maintenance-interaction together with the other components in the same row. \Rightarrow Arbitrarily large connectors.

There are (unreachable) global states that contain deadlocks.

The system can be proven deadlock-free by observing subsystems of size $3!\sqrt{}$

M. Majster-Cederbaum, M. Martens, C. Minnameier

Simplifications Example & Conclusion

Conclusion

 We introduced a sufficient condition for deadlock-freedom of component-based systems

Simplifications Example & Conclusion

Conclusion

- We introduced a sufficient condition for deadlock-freedom of component-based systems
- The condition can be checked within subsystems which yields a polynomial time bound

Simplifications Example & Conclusion

Conclusion

- We introduced a sufficient condition for deadlock-freedom of component-based systems
- The condition can be checked within subsystems which yields a polynomial time bound
- The size of the subsystems serves as a parameter which enables us to do a trade-off between time and accuracy