

Rapid Development of Web Interfaces to
Heterogeneous Systems

 José Paulo Leal
zp@ncc.up.pt

University of Porto
Portugal

Marcos Aurélio Domingues
marcos@ncc.up.pt

Outline

1-Introduction

2-Architecture

3-Implementation

4-Case study

5-Conclusion

6-Future work

Intro: Motivation

● Web interfaces to heterogeneous systems
– Research systems
– Legacy systems

● Web interfaces:
– Easily deployable
– Fairly good visualization and interaction

● Systems:
– Command line interpreter
– Text output

Intro: Approach

● Framework for web interface support
● Hot spots: XML configuration files

– System parameters (state)
– Interaction + state -> system commands
– System output + state -> web formatting

● Simple communication with system

Architecture: MVC (1)

● Pattern Model-View-Controller
● Decouples GUI from logic
● Separates commands from

presentation

Architecture: MVC (2)

● Discovered for Smalltalk
● OO applications with GUI
● Rediscovered as “model2” for webapps

– Views: JSP
– Controller: servlets
– Model: Java beans

● Frameworks implement MVC
– Struts
– Spring

Architecture: MVC (3)

● System is the model
● Model as set of Java beans

– Beans define properties (parameters)
– Access trough setters/getters
– Usually running in same process

● But system is a remote process
– Avoid remote calling (e.g. RMI,RPC)
– Execute command in system's interpreter
– Process system output

Architecture: framework (1)

● Framework hot spots inspired by MVC
– Model abstract the system
– Controller transform input to system
– View transforms system output

● But are XML files, not software objects

Architecture: framework (2)

● Parameters (properties) as interface
● Loaded from XML to DOM object
● Bound to users sessions
● Parameters are interaction state

Architecture: framework (3)

● HTTP Requests
– Changes parameters
– Transforms them in system's commands

● Transformation uses controller.xsl

Architecture: framework (4)

● System output converted to XML
● Transformed to HTML as response
● XSLT file acts as view definition

Implementation (1)

● Framework implemented
– Java webapp
– Tomcat servlet container

● UML class diagram (conceptual)

Implementation (2)

● Single Front controller is HTTP Servlet

● Commands process requests
● Depend on other framework classes

Implementation (3)

● Sessions control Generator and Choices
– On creation they are initiated
– On termination they are disposed

● Connection to a system process

Implementation (4)

● Choices hold current parameter state

● DOM loaded from valid model.xml
● Controls life cycle of system connection

Implementation (5)

● Generator transforms:

– Choices to commands: controller.xsl

– System output to HTML: view.xsl

● HTML Cache avoids command execution

Case study (1)
● Math exercise

sheets generator
● Constraint Logic

Program System
● Many parameters
● Produces

– LaTeX -> PDF
– QTI + MathML

● Available on-line

Case study (2)
● Web wizard
● Controller.XSL

produces Prolog
queries/predicates

● Changes in DTD of
model.xml

● Term to XML
conversion

● Cache system

Conclusions

+System/GUI
decoupling

+ Configuration of
✔ Parameters
✔ Commands
✔ Presentation

+Efficient

- Model language

- Cache invalidation

Future work

● More applications
● Highly interactive web interfaces (Ajax)
● Improve cache invalidation

