About the Termination Detection in the Asynchronous Message Passing Model

Jérémie Chalopin¹ Emmanuel Godard²

Yves Métivier¹ Gerard Tel³

¹Université Bordeaux 1

²Université de Provence, Marseille

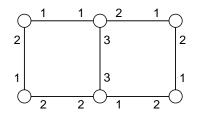
³University of Utrecht

SOFSEM 2007

Message passing systems

A network is represented as a graph *G* with a port-numbering δ where each process can

- modify its state,
- send a message via port p,
- receive a message via port q.



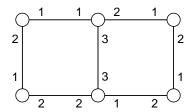
Message passing systems

A network is represented as a graph *G* with a port-numbering δ where each process can

- modify its state,
- send a message via port p,
- receive a message via port q.

We consider

- reliable networks,
- (potentially) anonymous systems.
- asynchronous systems.



Motivations

Different kinds of termination exist for distributed algorithms.

- Implicit termination:
 - in the final configuration, each process has computed a correct result,
 - the processes are not aware that the global computation has terminated.

Motivations

Different kinds of termination exist for distributed algorithms.

- Implicit termination:
 - in the final configuration, each process has computed a correct result,
 - the processes are not aware that the global computation has terminated.
- Explicit termination:
 - in the final configuration, each process has computed a correct result,
 - at least one process knows that the global result has been computed.

Motivations

Different kinds of termination exist for distributed algorithms.

- Implicit termination:
 - in the final configuration, each process has computed a correct result,
 - the processes are not aware that the global computation has terminated.
- Explicit termination:
 - in the final configuration, each process has computed a correct result,
 - at least one process knows that the global result has been computed.

Question

When can we transform a distributed algorithm with implicit termination into an algorithm with explicit termination ?

What initial knowledge must we have about the network to enable this transformation ?

- the topology of the network,
- its size,
- a bound on its size,
- ▶ ...

What initial knowledge must we have about the network to enable this transformation ?

- the topology of the network,
- its size,

...

a bound on its size,

Equivalently, what are the families of graphs where we can transform any implicitly terminating distributed algorithm into an explicitly terminating algorithm ?

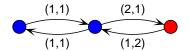
- compute a snapshot,
- check that the computation is globally finished:
 - no process can modify its state (according to the algorithm),
 - no message is in transit.

- compute a snapshot,
- check that the computation is globally finished:
 - no process can modify its state (according to the algorithm),
 - no message is in transit.

Problem

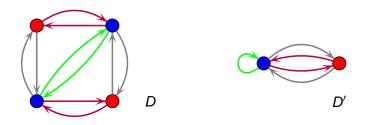
This ideal strategy cannot always be successfully applied.

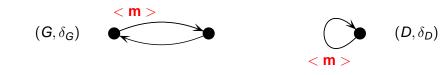
We represent the network by a labelled digraph (G, δ , λ) where the state of each process is encoded by its label.

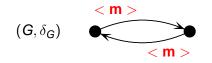


Definition

D is a covering of *D'* via φ if φ is a locally bijective homomorphism.







Lifting Lemma

Lifting Lemma

Lemma (from Angluin'80) (G, λ, δ_G) $covering \downarrow$ $(D, \eta, \delta_D) \xrightarrow{}{\mathcal{A}} (D, \eta', \delta_D)$

Lemma (from Angluin'80)

$$\begin{array}{ccc} (\boldsymbol{G}, \lambda, \delta_{\boldsymbol{G}}) & \stackrel{\mathcal{A}}{\longrightarrow} & (\boldsymbol{G}, \lambda', \delta_{\boldsymbol{G}}) \\ \text{covering} & & & \downarrow \text{covering} \\ (\boldsymbol{D}, \eta, \delta_{\boldsymbol{D}}) & \stackrel{\mathcal{A}}{\longrightarrow} & (\boldsymbol{D}, \eta', \delta_{\boldsymbol{D}}) \end{array}$$

- compute a "snapshot" up to a covering,
- check that the computation is globally finished:
 - no process can modify its state (according to the algorithm),
 - no message is in transit.

Proposition (from Mazurkiewicz'97)

There exists an algorithm \mathcal{M} that terminates implicitly on any graph (G, λ, δ_G) that computes a graph (D, η, δ_D) such that:

• (G, λ, δ_G) is a covering of (D, η, δ_D) via a homomorphism γ ,

Proposition (from Mazurkiewicz'97)

There exists an algorithm \mathcal{M} that terminates implicitly on any graph (G, λ, δ_G) that computes a graph (D, η, δ_D) such that:

- (G, λ, δ_G) is a covering of (D, η, δ_D) via a homomorphism γ ,
- each vertex v knows (D, η, δ_D) and $\gamma(v)$.

Proposition (from Mazurkiewicz'97)

There exists an algorithm \mathcal{M} that terminates implicitly on any graph (G, λ, δ_G) that computes a graph (D, η, δ_D) such that:

- $(\mathbf{G}, \lambda, \delta_{\mathbf{G}})$ is a covering of $(\mathbf{D}, \eta, \delta_{\mathbf{D}})$ via a homomorphism γ ,
- each vertex v knows (D, η, δ_D) and $\gamma(v)$.

One can obtain an algorithm $\mathcal{M}(\mathcal{A})$ that terminates implicitly on any graph $(G, \lambda, \delta) \in \mathcal{F}$ and that yields to a final labelling $(G, (\lambda, \operatorname{res}_{\mathcal{A}}, \operatorname{res}_{\mathcal{M}}), \delta)$ such that :

 (G, res_A, δ) is the final configuration of an execution of A on (G, λ, δ),

Proposition (from Mazurkiewicz'97)

There exists an algorithm \mathcal{M} that terminates implicitly on any graph (G, λ, δ_G) that computes a graph (D, η, δ_D) such that:

- $(\mathbf{G}, \lambda, \delta_{\mathbf{G}})$ is a covering of $(\mathbf{D}, \eta, \delta_{\mathbf{D}})$ via a homomorphism γ ,
- each vertex v knows (D, η, δ_D) and $\gamma(v)$.

One can obtain an algorithm $\mathcal{M}(\mathcal{A})$ that terminates implicitly on any graph $(G, \lambda, \delta) \in \mathcal{F}$ and that yields to a final labelling $(G, (\lambda, \operatorname{res}_{\mathcal{A}}, \operatorname{res}_{\mathcal{M}}), \delta)$ such that :

- (G, res_A, δ) is the final configuration of an execution of A on (G, λ, δ),
- (G, res_M, δ) is the final configuration of the execution of M on (G, (λ, res_A), δ).

A "better" strategy

- compute a "snapshot" up to a covering,
- check that the computation is globally finished:
 - no process can modify its state (according to the algorithm),
 - no message is in transit.

Problem

- The "snapshot" up to a covering can be computed only in the final configuration.
- The processes cannot detect the termination.

A "better" strategy

- compute a "snapshot" up to a covering,
- check that the computation is globally finished:
 - no process can modify its state (according to the algorithm),
 - no message is in transit.

Problem

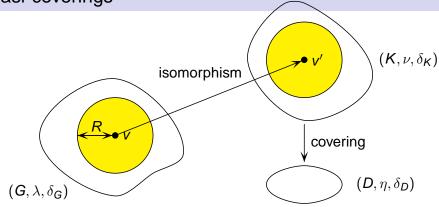
- The "snapshot" up to a covering can be computed only in the final configuration.
- The processes cannot detect the termination.

What is the meaning of the states of the processes during the execution of our "snapshot" algorithm ?

In the litterature, some impossibility results exist

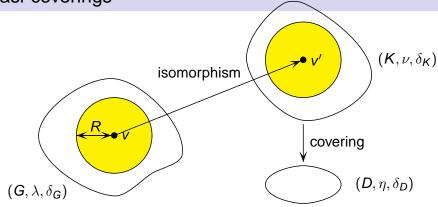
- Angluin '80 : about the detection of the termination.
- Métivier, Muscholl, Wacrenier '97 : introduction of quasi-coverings.

Quasi-coverings



 (G, λ, δ_G) is a quasi-covering of (D, η, δ_D) of radius *R* of center *v*.

Quasi-coverings



 (G, λ, δ_G) is a quasi-covering of (D, η, δ_D) of radius *R* of center *v*.

If $V(G) \setminus B_G(v, k) \neq \emptyset$, the quasi-covering is strict.

Impossibility result (from MMW'97)

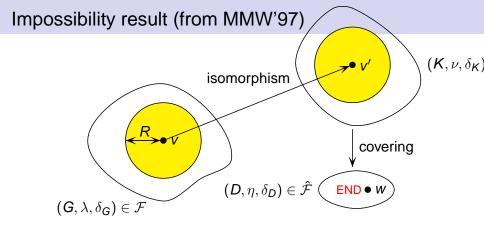
$$(D,\eta,\delta_D)\in\hat{\mathcal{F}}$$
 • *w*

Let *F̂* = {(*D*, η, δ_D) | ∃(*G*, λ, δ_G) that covers (*D*, η, δ_D)}.
Consider *T* that detects termination on *F* and a synchronous execution ρ of *T* on (*D*, η, δ_D).

Impossibility result (from MMW'97)

$$(D,\eta,\delta_D)\in \hat{\mathcal{F}}$$
 END • W

- ▶ Let $\hat{\mathcal{F}} = \{ (D, \eta, \delta_D) \mid \exists (G, \lambda, \delta_G) \text{ that covers } (D, \eta, \delta_D) \}.$
- Consider *T* that detects termination on *F* and a synchronous execution *ρ* of *T* on (*D*, η, δ_D).
- Let *r* be the number of rounds of ρ .



- ► Let $\hat{\mathcal{F}} = \{ (D, \eta, \delta_D) \mid \exists (G, \lambda, \delta_G) \text{ that covers } (D, \eta, \delta_D) \}.$
- Consider *T* that detects termination on *F* and a synchronous execution *ρ* of *T* on (*D*, η, δ_D).
- Let r be the number of rounds of ρ.
- Suppose there exists (G, λ, δ_G) ∈ F that is a strict quasi-covering of (D, η, δ_D) of radius R > r.

Theorem

Given a recursive family ${\cal F}$ of networks, one can detect the termination of ${\cal A}$ on ${\cal F}$

 \Leftrightarrow

there exists a computable function $r : \hat{\mathcal{F}} \to \mathbb{N}$ such that for any $(D, \lambda, \delta) \in \hat{\mathcal{F}}$, there is no strict quasi-covering of (D, λ, δ) of radius $r(D, \lambda, \delta)$ in \mathcal{F} .

- compute a "snapshot" up to a quasi-covering,
- check that the computation is globally finished:
 - no process can modify its state (according to the algorithm),
 - no message is in transit.

During the computation of *M*(*A*) on (*G*, λ, δ_G), each vertex knows a graph (*D*, η, δ_D) ∈ *F̂* such that (*G*, λ, δ_G) is a quasi-covering of (*D*, η, δ_D).

- During the computation of *M*(*A*) on (*G*, λ, δ_G), each vertex knows a graph (*D*, η, δ_D) ∈ *F̂* such that (*G*, λ, δ_G) is a quasi-covering of (*D*, η, δ_D).
- Using an adaptation of an algorithm of Szymanski, Shy and Prywes ('85), we can compute in each node the radius *R* of this quasi-covering.

- During the computation of *M*(*A*) on (*G*, λ, δ_G), each vertex knows a graph (*D*, η, δ_D) ∈ *F̂* such that (*G*, λ, δ_G) is a quasi-covering of (*D*, η, δ_D).
- Using an adaptation of an algorithm of Szymanski, Shy and Prywes ('85), we can compute in each node the radius *R* of this quasi-covering.
- If R > r(D, η, δ_D), then the quasi-covering cannot be strict (by definition of the function r).

- During the computation of *M*(*A*) on (*G*, λ, δ_G), each vertex knows a graph (*D*, η, δ_D) ∈ *F̂* such that (*G*, λ, δ_G) is a quasi-covering of (*D*, η, δ_D).
- Using an adaptation of an algorithm of Szymanski, Shy and Prywes ('85), we can compute in each node the radius *R* of this quasi-covering.
- If R > r(D, η, δ_D), then the quasi-covering cannot be strict (by definition of the function r).
- (G, λ, δ_G) is a covering of (D, η, δ_D) and all vertices of G have computed their final values.

► Known corollaries :

One can detect termination of an algorithm \mathcal{A} on a network (G, λ, δ) if one of the following conditions is satisfied.

- existence of a leader,
- unique ids,
- initial knowledge of a bound on the size of the network.

Known corollaries :

One can detect termination of an algorithm A on a network (G, λ, δ) if one of the following conditions is satisfied.

- existence of a leader,
- unique ids,
- initial knowledge of a bound on the size of the network.
- New corollaries :

One can detect termination of an algorithm A on a network (G, λ, δ) if one of the following conditions is satisfied.

- existence of at most k distinguished vertices,
- initial knowledge of a bound on the multiplicity of each initial label.