

Maximum finding in the symmetric radio networks with collision detection

František Galčík (joint work with Gabriel Semanišin)

Institute of Computer Science P.J. Šafárik University, Faculty of Science Košice, Slovakia

SOFSEM 2007

ヘロト 人間 ト ヘヨト ヘヨト

æ

What is radio network ?

- a collection of receiver-transmitter devices nodes
- nodes are autonomous
- communication via sending messages
- single shared communication frequency
- nodes work in globally synchronised time slots rounds
- in each round, each node makes a decision: act either as a receiver or as a transmitter
- multihop network modelled by a reachability graph

伺き くほき くほう

 if a node *u* transmits, then the signal from *u* goes to all nodes within its transmission range

프 🕨 🗉 프

- if a node *u* transmits, then the signal from *u* goes to all nodes within its transmission range
- if the node v listen: then it receives message from u if and only if u is the only transmitting node which has v in its transmission range

- if a node *u* transmits, then the signal from *u* goes to all nodes within its transmission range
- if the node v listen: and is in the range of more than one transmitting node, then collision occurs and no message is received the node v hears interference noise

 if the node v listen: and v is in the range of no transmitting node, then v hears
background noise

Key features of radio communication

- interference of simultaneous transmissions (slowdown)
 - occurs if a node is in the range of more than one transmitting node

- omnidirectional transmission (speedup)
 - a node transmits to all nodes located within its transmission range

▲御♪ ▲臣♪ ▲臣♪ 二臣

Reachability graph, measure of effectiveness

Reachability graph of a radio network is a directed graph G = (V, E), where

- vertex set *V* corresponds to the nodes of the network
- an edge e = (u, v) ∈ E ⇐⇒ the node v is in the transmission range of the node u

Measure of effectiveness

- mostly the time required to complete the prescribed communication task
- other studied measures: energy consumption, combined measures, etc.
- measured according to parameters of reachability graph (diameter *D*, eccentricity *ecc* of the source, number of nodes *n*, etc.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Communication tasks

- broadcasting the goal is to deliver a message from a distinguished node (source) to all nodes of the network
- gossiping all nodes have a message, the goal is to distribute each message to all nodes of the network
- maximum finding each node possesses a (integer) value, the goal is to compute the maximal possessed value in a distinguished node (initiator)

• . . .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Different communication scenarios

- directed or undirected (symmetric) network
- known network, unknown network or partially known network
- no node labels (anonymous nodes) nodes with labels (1, ..., O(n))
- randomized or deterministic protocol
- bounded or unbounded messages
- collision detection or no collision detection

Collision detection

 a listening node is able to distinguish interference noise (more than one transmitting neighbour) and background noise (no transmitting neighbour)

Effectiveness is significantly influenced by considered model.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ の Q ()

Our setting

Model of radio network:

- undirected (symmetric) network (e.g. transmission power of all nodes is the same)
- unknown network
- no node labels (anonymous nodes)
- deterministic protocol, bounded messages
- collision detection capability

Problem: Integer maximum finding

- each node possesses an integer value
- a distinguished node (initiator) has the goal to compute the maximal possessed value
- the initiator starts in the time (round) unknown to other nodes

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Our setting - example of motivation

- sensor devices measuring a physical quantity and communicating via low-power radio
- one central node (operator) needs to known the maximal measured value (e.g. maximal radiation)
- limited precision of real measurement integer values

Theorem

There is an asymptotically optimal algorithm computing the value Max (in the initiator) in $\Theta(ecc + \log Max)$ rounds, where

- Max is the maximal integer value over possessed values
- ecc is the eccentricity of the initiator, i.e. maximal distance from the initiator to any other node of the network.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Used techniques

- encoding information into collisions
- pipelining (wave technique)
- utilised properties of binary encoding of integers

Subroutine algorithm RBEM

- pipelined broadcast algorithm using encoding information into collisions
- broadcasts message *M* of binary length *m* in O(ecc + m), where *ecc* is the eccentricity of the source node
- presented by Okuwa, Chen, Wada (2003)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Encoding information into collisions (1)

- a distinguished message contact message
- encoding of 1 bit information:
 - "0" ... no message is transmitted
 - "1" ... contact message is transmitted
- decoding of the received information (listening node):
 - no message received
 - \implies all neighbours (if exist) said "0"
 - contact message received or collision detected
 - \implies at least one neighbour said "1"

・ロト ・ 理 ト ・ ヨ ト ・

- Layer a set of nodes in the same distance from a distinguished node (e.g. initiator, source)
- simple broadcast algorithm: message transformed to
 - opening sequence (e.g. 11)
 - message content not including the closing sequence (e.g. 1 \rightarrow 01, 0 \rightarrow 00)
 - closing sequence (e.g. 11)

and distributed layer by layer

• only two neighbouring layers work in the same time

(E) (E)

- Layer a set of nodes in the same distance from a distinguished node (e.g. initiator, source)
- simple broadcast algorithm: message transformed to
 - opening sequence (e.g. 11)
 - message content not including the closing sequence (e.g. 1 \rightarrow 01, 0 \rightarrow 00)
 - closing sequence (e.g. 11)

and distributed layer by layer

• only two neighbouring layers work in the same time

★ Ξ → ★ Ξ →

- Layer a set of nodes in the same distance from a distinguished node (e.g. initiator, source)
- simple broadcast algorithm: message transformed to
 - opening sequence (e.g. 11)
 - message content not including the closing sequence (e.g. 1 \rightarrow 01, 0 \rightarrow 00)
 - closing sequence (e.g. 11)

and distributed layer by layer

• only two neighbouring layers work in the same time

★ Ξ → ★ Ξ →

- Layer a set of nodes in the same distance from a distinguished node (e.g. initiator, source)
- simple broadcast algorithm: message transformed to
 - opening sequence (e.g. 11)
 - message content not including the closing sequence (e.g. 1 \rightarrow 01, 0 \rightarrow 00)
 - closing sequence (e.g. 11)

and distributed layer by layer

• only two neighbouring layers work in the same time

★ Ξ → ★ Ξ →

- solution for "simultaneous" communication in all layers without "interference"
- pipelined broadcasting: immediately after recognizing next bit of message, it is sent to the next layer
- layers divided into 3 groups (distance modulo 3), cyclic changing of action
 - transmit segment
 - receive segment
 - sleep segment separation function

- solution for "simultaneous" communication in all layers without "interference"
- pipelined broadcasting: immediately after recognizing next bit of message, it is sent to the next layer
- layers divided into 3 groups (distance modulo 3), cyclic changing of action
 - transmit segment
 - receive segment
 - sleep segment separation function

- solution for "simultaneous" communication in all layers without "interference"
- pipelined broadcasting: immediately after recognizing next bit of message, it is sent to the next layer
- layers divided into 3 groups (distance modulo 3), cyclic changing of action
 - transmit segment
 - receive segment
 - sleep segment separation function

- solution for "simultaneous" communication in all layers without "interference"
- pipelined broadcasting: immediately after recognizing next bit of message, it is sent to the next layer
- layers divided into 3 groups (distance modulo 3), cyclic changing of action
 - transmit segment
 - receive segment
 - sleep segment separation function

Rough description of algorithm

Preprocessing

- in the initiator, compute eccentricity of the initiator O(ecc) rounds
- 2 broadcast computed eccentricity ecc O(ecc) round using RBEM algorithm
- in each node computes its distance from the initiator O(ecc) rounds

side effect: synchronisation of nodes

- Computation of the maximal value
 - in the initiator, compute estimation B_{max} of maximal value *Max* such that $2^{B_{max}-1} < Max < 2^{B_{max}}$ $O(ecc + \log Max)$ rounds

Interpretending in the second seco $O(ecc + \log Max)$ rounds using RBEM algorithm

in the initiator, compute the value Max $O(ecc + \log Max)$ rounds

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- works in 2-part phases:
- 1st part activates nodes in the next layer and provides information about modulo 3 distance (4 rounds)
- 2nd part informs active nodes about existence of their active +1-neighbours (6 rounds)

- first part uses special opening sequence and encodes modulo 3 distance by appropriate transmissions
- opening sequence sets up counter of the actual round of the current phase
- second part is scheduled using known modulo 3 distances of active nodes and avoiding transmission of opening sequence of the first part
- *C* = 2.*ecc* + 2, where *C* is the number of phases in which the initiator is active

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Distance computing

- simple modification of *RBEM* (pipelined broadcast) algorithm
- nodes of the layer L_i dynamically change broadcasted message to the binary encoded number i + 1
- based on the fact, that knowing k lowest bits of a number j we know k lowest bits of the number j + 1

Maximum computing (1)

- suppose, that the value *B_{max}* is known by all nodes
 - $2^{B_{max}-1} \leq Max < 2^{B_{max}}$
 - algorithm for computing B_{max} is based on simplified idea of the maximum computing algorithm
 - B_{max} broadcasted by RBEM
- all values V_v (possessed integer values) can be considered as **binary sequences** of the **same length** B_{max}
- each node computes E_v its **estimation** of the maximal value
- node is active only if its estimation can be "useful" in the following computation - otherwise it is deactivated

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

+1-neighbours of v have updated their estimations

▲□ > ▲ □ > ▲ □ > □ □

+1-neighbours inform v about active bits of their estimations

(人) 医子子 医子子 医

< 🗇 >

v informs +1-neighbours about its setting of active bit

(E) < (E)</p>

< 🗇 ▶

3

B is deactivated - it cannot help

医外球 医外口

æ

+1-neighbours inform v about active bits of their estimations

(人) 医子子 医子子 医

< 🗇 >

A can have other -1-neighbours ...

(E) < (E)</p>

ъ

A is deactivated - stopped by a -1 neighbour

(E) < E)</p>

3

+1-neighbours inform v about active bits of their estimations

(人) 医子子 医子子 医

< 🗇 >

value V_v is too small and will be never considered

프 에 관 프 어 - - -

P •

3

D is deactivated ...

(문화)(문화)

< 🗇

æ

- transmissions are scheduled according to the (known) distances from the initiator
- *E_v* is always "greater" than *V_v* and "less" than all reachable estimations in higher layers
- "maximal value" always reaches initiator
- if E_s is fully computed, it is equal to the searched maximum

Total time of computation: $O(ecc + \log Max)$ rounds

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Theorem

For any maximum finding algorithm with collision detection there exists a symmetric radio network of diameter 2 and such an assignment of values associated to nodes that the algorithm requires $\Omega(\log Max)$ rounds.

proof based on the result from Dessmark and Pelc:
Ω(log n) lower bound of broadcasting in symmetric geometric radio networks (GRN) with collision detection

Therefore designed algorithm is asymptotically optimal.

ヘロン 人間 とくほ とくほ とう

ъ

Conclusion

- we design ⊖(ecc + log Max) maximum finding algorithm for anonymous symmetric radio networks with collision detection
- possible utilisations:
 - maximum finding algorithm in the case of "real" (binary encoded in the mantissa/exponent form) possessed values
 - computing unknown parameters of the network
 - "synchronisation" of nodes
 - selection of particular specific node, e.g. node with maximal label
 - utilisation for broadcasting and gossiping (already utilised for broadcasting in planar graphs)
- future research:
 - networks without collision detection

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Thank you for attention

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔅