
Indexing Factors with Gaps

M. Sohel Rahman and Costas S. Iliopoulos

Algorithm Design Group

Department of Computer Science

King’s College London

www.dcs.kcl.ac.uk/adg

SOFSEM 2007 – p.1/34

Definitions:Text/String

• A sequence of zero or more symbols from an
alphabet Σ.

• Denoted by T [1..n] = T1T2 . . . Tn, where Ti ∈ Σ for
1 ≤ i ≤ n.

• The length of T is denoted by |T | = n.

•
←−
T denotes the reverse of the string T .

• Example: T = ACAAGTGCA is a text of length 9

• So,
←−
T = ACGTGAACA

SOFSEM 2007 – p.2/34

Definitions:Factors

T = ACAAGTGCA

• A string w is a factor of T if T = uwv for u, v ∈ Σ∗

• In this case, the string w occurs at position |u|+ 1
in T .

• w is denoted by T [|u|+ 1..|u|+ |w|].
• Example: w = AAG = T [3..5] is a factor of T
• A k-factor is a factor of length k.
• Example: w = AAG is a 3-factor of T

SOFSEM 2007 – p.3/34

Definitions: Prefix and Suffix

T = ACAAGTGCA

• A prefix of T is a factor T [1..y], 1 ≤ y ≤ n.
• Example: ACA is a prefix of T .
• ith prefix is the prefix ending at position i.
• Hence ACA is the 3rd prefix.
• A suffix of T is a factor T [x..n], 1 ≤ x ≤ n.
• Example: TGCA is a suffix of T
• ith suffix is the suffix starting at position i.
• Hence TGCA is the 6th suffix.

SOFSEM 2007 – p.4/34

Definitions: Gapped Factors

T = ACAAGTGCA

• gapped-factor is a concatenation of two factors
separated by a gap i.e. a block of don’t care
characters

• A don’t care character ‘∗’ can match any character
a ∈ Σ and ∗ /∈ Σ.

• CA ∗ ∗ ∗G is a gapped factor of T

1 2 3 4 5 6 7 8 9
T = A C A A G T G C A

C A ∗ ∗ ∗ G

SOFSEM 2007 – p.5/34

Definitions: (k − d− k′)-Gapped
Factors

• A (k − d− k′)-gapped-factor is a gapped-factor
where the length of the two sub-factors are,
respectively, k and k′ and the length of gaps is d.

• A (k − d− k′)-gapped-factor is X = Xf ∗
d Xℓ, where

Xf = X[1..k], Xf = X[k + d + 1..|X|] and ∗d denotes
the concatenation of d don’t care characters.

• X = CA ∗3 G is a (2− 3− 1)-gapped factor of T

SOFSEM 2007 – p.6/34

Definitions: Gapped Factors
Occurrence

• A (k − d− k′)-gapped-factor X is said to occur at
position i of a string Y if and only if:
1. we have an occurrence of Xf at position i and
2. we have an occurrence of Xℓ at position

i + k + d.
• The position i is said to be an occurrence of X in
T .

• We denote by OccT
X the set of occurrences of X in

T .

SOFSEM 2007 – p.7/34

Example: Gapped Factors
Occurrence

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T = A G G A C C G G G T T G A

X = G A C ∗ ∗ ∗ G T T G A

L99 k 99K L99 k′ 99K

X = G A

• We have GAC at position 3
• we have GTTGA at position 3 + k + d = 3 + 3 + 3 =

9
• So we have an occurrence of GAC ∗3 GTTGA at

position 3.

SOFSEM 2007 – p.8/34

Our Goal

• Present an efficient data structure to index gapped
factors

SOFSEM 2007 – p.9/34

The Main Idea

Goal: Finding the Occurrence of
X = Xf ∗

d Xℓ = AC ∗ ∗GTG in T = ACACACGTGTGTG

1: Compute OccT
Xf

{OccT
Xf

= {1, 3, 5}}

2: Compute OccT
Xℓ

{OccT
Xℓ

= {7, 9, 11}}
3: for i ∈ OccT

Xℓ
do

4: i = i− |Xf | − d{OccT
Xf

= {3, 5, 7}}
5: end for
6: Compute OccT

X = OccT
Xf

⋂
OccT

Xℓ
{OccT

X = {3, 5}}

7: return OccT
X {OccT

X = {3, 5}}

SOFSEM 2007 – p.10/34

Gapped Factors Occurrences

1 2 3 4 5 6 7 8 9 10 11 12 13

T = A C A C A C G T G T G T G

X = A C ∗ ∗ G T G

X = A C ∗ ∗ G T G

Occurrences of AC = {1, 3, 5}
Occurrences of GTG = {7, 9, 11} 99K shift 99K {3, 5, 7}
Intersection: {1, 3, 5}

⋂
{3, 5, 7} = {3, 5}

SOFSEM 2007 – p.11/34

The Main Idea

• Find the occurrences of the first factor (Xf).

• Find the occurrences of the last factor (Xℓ)).
• Perform a bit of shifting and then compute the

intersection.

However, we need to do it now in the context of index-

ing!

SOFSEM 2007 – p.12/34

GFI (Gapped Factor Index)
Construction Algorithm

STEP 1:
• Build a suffix tree STT of T .
• Preprocess STT such that each internal node

stores the range of leaves it corresponds to.

Why?: We will find the occurrence of Xℓ using STT .

SOFSEM 2007 – p.13/34

GFI (Gapped Factor Index)
Construction Algorithm

STEP 2:
• Build a suffix tree ST←−

T
of
←−
T .

• The label of each leaf is replaced by
(n + 1)− actual_label + d + 1.

• Preprocess ST←−
T

such that each internal node
stores the range of leaves it corresponds to.

Why?: We will find the occurrence of
←−
Xf using ST←−

T
.

Finding these occurrences will be equivalent to finding

the occurrences of Xf according to the desired shift.

SOFSEM 2007 – p.14/34

GFI (Gapped Factor Index)
Construction Algorithm

STEP 3:
• Build a data structure to facilitate the intersection

SOFSEM 2007 – p.15/34

First Step

T = ACACACGTGTG

AC

C
G

TG

$

10

TG$

8

TG
$

11

$

9

TG$

7

GTGTG$

6

AC

GTGTG$

ACGTGTG$

42

GTGTG$

5

CA

GTGTG$

3

ACGTGTG$

1

SOFSEM 2007 – p.16/34

First Step

T = ACACACGTGTG

AC

C
G

TG

$

10

TG$

8

TG
$

11

$

9

TG$

7

GTGTG$

6

AC

GTGTG$

ACGTGTG$

42

GTGTG$

5

CA

GTGTG$

3

ACGTGTG$

1

R

L = 1 → 3 → 5 → 2 → 4 → 6 → 11 → 9 → 7 → 10 → 8

SOFSEM 2007 – p.17/34

Why the First Step?

T = ACACACGTGTG,X = AC ∗ ∗GTG

Used to find the occurrences of Xℓ = GTG.

AC

C
G

TG

$

10

TG$

8

TG
$

11

$

9

TG$

7

GTGTG$

6

AC

GTGTG$

ACGTGTG$

42

GTGTG$

5

CA

GTGTG$

3

ACGTGTG$

1

R

L = 1 → 3 → 5 → 2 → 4 → 6 → 11 → 9 → 7 → 10 → 8 SOFSEM 2007 – p.18/34

Second Step

←−
T = GTGTGCACACA

A

$

CA

CA$

$

CA

$

CA

$
CA$

G

TG

TG
CACACA$

CACACA$

TGCACACA$

CACACA$
TGCACACA$

11

9

7

10

8 6 5 3 1 4 2

SOFSEM 2007 – p.19/34

Second Step

←−
T = GTGTGCACACA

A

$

CA

CA$

$

CA

$

CA

$
CA$

G

TG

TG
CACACA$

CACACA$

TGCACACA$

CACACA$
TGCACACA$

11

9

7

10

8 6 5 3 1 4 2

←−
R

4

6

8

5

7 9 10 12 14 11 13

←−
L = 4→ 6→ 8→ 5→ 7→ 9→ 10→ 12→ 14→ 11→ 13

SOFSEM 2007 – p.20/34

Why the Second Step?

←−
T = GTGTGCACACA,X = AC ∗ ∗GTG

Used to find the occurrences of
←−
Xf = CA.

A

$

CA

CA$

$

CA

$

CA

$
CA$

G

TG

TG
CACACA$

CACACA$

TGCACACA$

CACACA$
TGCACACA$

11

9

7

10

8 6 5 3 1 4 2

←−
R

4

6

8

5

7 9 10 12 14 11 13

←−
L = 4→ 6→ 8→ 5→ 7→ 9→ 10→ 12→ 14→ 11→ 13

SOFSEM 2007 – p.21/34

Third Step

Now we have the followings:

1. We have an array L and two indices i, j

2. we have an array
←−
L and two indices k, l

3. We want the intersection of elements of L[i..j] and
←−
L [k..l].

Our Goal: Preprocess
←−
L and

←−
L to give the Range In-

tersection.

SOFSEM 2007 – p.22/34

Third Step

Transformation to Range Search Problem On Grid:
1 2 3 4 5 6 7 8 9 10 11

L = 1 3 5 2 4 6 11 9 7 10 8
←−
L = 4 6 8 5 7 9 10 12 14 11 13

= − − − 5, 1 3, 4 6, 2 9, 5 11, 3 8, 6 10, 7 7, 10

SOFSEM 2007 – p.23/34

Third Step

(0, 0) 2 4 6 8 10

2

4

6

8

10

(5, 1)

(3, 4)

(6, 2)

(11, 3)

(9, 5)

(8, 6)

(10, 7)

(7, 10)

12

SOFSEM 2007 – p.24/34

Third Step

We have i, j ≡ 8, 9 and k, l ≡ 4, 6. So we look for the
points in the rectangle (i, k)× (j, l) ≡ (8, 4)× (9, 6)

(0, 0) 2 4 6 8 10

2

4

6

8

10

(5, 1)

(3, 4)

(6, 2)

(11, 3)

(9, 5)

(8, 6)

(10, 7)

(7, 10)

12

(8, 4)

(9, 6)

SOFSEM 2007 – p.25/34

Third Step

Final result:
X X

1 2 3 4 5 6 7 8 9 10 11

L = 1 3 5 2 4 6 11 9 7 10 8
←−
L = 4 6 8 5 7 9 10 12 14 11 13

= − − − 5, 1 3, 4 6, 2 9, 5 11, 3 8, 6 10, 7 7, 10

= × × × × × × X × X × ×

Re-shifting:
7→ (7− d− |Xf |)→ 3

9→ (9− d− |Xf |)→ 5

SOFSEM 2007 – p.26/34

Final Result

So the occurrences are 3 and 5 as can verified below:
1 2 3 4 5 6 7 8 9 10 11

T = A C A C A C G T G T G

X = A C ∗ ∗ G T G

X = A C ∗ ∗ ∗ ∗ G

SOFSEM 2007 – p.27/34

Recap: GFI Construction Steps

• Construct suffix tree of T and do some
preprocessing to get the list L

• Construct suffix tree of
←−
T and do some

preprocessing to get the list
←−
L

• Preprocess for Range Search on the Grid for L
and

←−
L

SOFSEM 2007 – p.28/34

Recap: Search Steps

• Find the occurrences of Xℓ implicitly as two
pointers i, j

• Find the (shifted) occurrences of
←−
Xf implicitly as

two pointers k, ℓ

• Find the points in the rectangle (i, k)× (j, l).

SOFSEM 2007 – p.29/34

A Pictorial Description

A C

A C A C

G

T G

T

G

G

A C G T

∗∗

A

G T G

C

34567891011 12

3 4 5 6 7 8 9 10 1121

8

(n + 1) − 8 + d + 1 = 7

7

7 − k − d = 3

3

SOFSEM 2007 – p.30/34

Running Time of GFI Construction

1. Both Suffix trees construction and preprocessing
on them: O(n).

2. Preprocessing for the range search on Grid:
O(n log1+ǫ n) (Alstrup et al.)

So total time: O(n log1+ǫ n) (0 < ǫ < 1)

SOFSEM 2007 – p.31/34

Search Time

1. Finding occurrences of Xℓ: O(|Xℓ|)

2. Finding occurrences of Xf according to the shift:
O(|Xf |)

3. Finding the intersection results: O(log log n + K),
where K is the number of output.

So total time: O(m + log log n + OccTX)

SOFSEM 2007 – p.32/34

Previous Work and Comparison

Peterlongo et. al gave a data structure, GFT, to index
gapped factor:
• Construction cost: O(Σn)

• Search Cost: O(m + OccTX)

SOFSEM 2007 – p.33/34

• Previous Work and Comparison

• Construction cost of GFI is much better than that
of GFT

• Search Cost GFI is slightly worse (log log n) than
that of GFT

• GFT is fixed for k, k′, d. GFI is only fixed for d.

SOFSEM 2007 – p.34/34

Other Results in the paper

• Extension of GFI to handle multiple strings
• Extension of GFI to handle document listing

problem

SOFSEM 2007 – p.35/34

End of Presentation

THANK YOU
FOR YOUR PATIENCE

SOFSEM 2007 – p.36/34

	Definitions:Text/String
	Definitions:Factors
	Definitions: Prefix and Suffix
	Definitions: Gapped Factors
	Definitions: $(k-d-k')$-Gapped
Factors
	Definitions: Gapped Factors Occurrence
	Example: Gapped Factors Occurrence
	Our Goal
	The Main Idea
	Gapped Factors Occurrences
	The Main Idea
	GFI (Gapped Factor Index)
Construction Algorithm
	GFI (Gapped Factor Index)
Construction Algorithm
	GFI (Gapped Factor Index)
Construction Algorithm
	First Step
	First Step
	Why the First Step?
	Second Step
	Second Step
	Why the Second Step?
	Third Step
	Third Step
	Third Step
	Third Step
	Third Step
	Final Result
	Recap: GFI Construction Steps
	Recap: Search Steps
	A Pictorial Description
	Running Time of GFI Construction
	Search Time
	Previous Work and Comparison
	Previous Work and Comparison
	Other Results in the paper
	End of Presentation

