Indexing Factors with Gaps

M. Sohel Rahman and Costas S. Iliopoulos

Algorithm Design Group Department of Computer Science King's College London www.dcs.kcl.ac.uk/adg

- A sequence of zero or more symbols from an alphabet Σ .
- Denoted by $\mathcal{T}[1..n] = \mathcal{T}_1 \mathcal{T}_2 \dots \mathcal{T}_n$, where $\mathcal{T}_i \in \Sigma$ for $1 \leq i \leq n$.
- The length of \mathcal{T} is denoted by $|\mathcal{T}| = n$.
- $\overleftarrow{\mathcal{T}}$ denotes the reverse of the string \mathcal{T} .
- Example: T = ACAAGTGCA is a text of length 9
- So, $\overleftarrow{T} = ACGTGAACA$

T = ACAAGTGCA

- A string w is a factor of \mathcal{T} if $\mathcal{T} = uwv$ for $u, v \in \Sigma^*$
- In this case, the string w occurs at position |u| + 1 in \mathcal{T} .
- w is denoted by $\mathcal{T}[|u| + 1..|u| + |w|]$.
- Example: $w = AAG = \mathcal{T}[3..5]$ is a factor of \mathcal{T}
- A k-factor is a factor of length k.
- Example: w = AAG is a 3-factor of T

T = ACAAGTGCA

- A prefix of \mathcal{T} is a factor $\mathcal{T}[1..y]$, $1 \le y \le n$.
- Example: ACA is a prefix of T.
- *i*th prefix is the prefix ending at position *i*.
- Hence *ACA* is the 3rd prefix.
- A suffix of \mathcal{T} is a factor $\mathcal{T}[x..n]$, $1 \le x \le n$.
- Example: TGCA is a suffix of T
- *i*th suffix is the suffix starting at position *i*.
- Hence *TGCA* is the 6th suffix.

T = ACAAGTGCA

- gapped-factor is a concatenation of two factors separated by a gap i.e. a block of don't care characters
- A don't care character '*' can match any character $a \in \Sigma$ and $* \notin \Sigma$.
- CA * * * G is a gapped factor of T

$$\mathcal{T} = A \quad C \quad A \quad A \quad G \quad T \quad G \quad C \quad A \\ C \quad A \quad * \quad * \quad * \quad G$$

Definitions: (k - d - k')-**Gapped**

Factors

- A (k d k')-gapped-factor is a gapped-factor where the length of the two sub-factors are, respectively, k and k' and the length of gaps is d.
- A (k − d − k')-gapped-factor is X = X_f *^d X_ℓ, where X_f = X[1..k], X_f = X[k + d + 1..|X|] and *^d denotes the concatenation of d don't care characters.
- $X = CA *^3 G$ is a (2 3 1)-gapped factor of T

Definitions: Gapped Factors Occurrence

- A (k d k')-gapped-factor X is said to occur at position i of a string Y if and only if:
 - 1. we have an occurrence of X_f at position *i* and
 - 2. we have an occurrence of X_{ℓ} at position i + k + d.
- The position i is said to be an occurrence of X in \mathcal{T} .
- We denote by Occ_X^T the set of occurrences of X in \mathcal{T} .

Example: Gapped Factors Occurrence

- We have *GAC* at position 3
- we have *GTTGA* at position 3 + k + d = 3 + 3 + 3 =
 9
- So we have an occurrence of $GAC *^3 GTTGA$ at position 3.

Our Goal

Present an efficient data structure to index gapped factors

Goal: Finding the Occurrence of $X = X_f *^d X_\ell = AC * *GTG$ in $\mathcal{T} = ACACACGTGTGTG$ 1: Compute $Occ_{X_f}^T \{ Occ_{X_f}^T = \{1, 3, 5\} \}$ 2: Compute $Occ_{X_{\ell}}^{T} \{ Occ_{X_{\ell}}^{T} = \{7, 9, 11\} \}$ 3: for $i \in Occ_{X_a}^T$ do 4: $i = i - |X_f| - d\{Occ_{X_f}^T = \{3, 5, 7\}\}$ 5: end for 6: Compute $Occ_X^T = Occ_{X_f}^T \cap Occ_{X_\ell}^T \{Occ_X^T = \{3, 5\}\}$ 7: return $Occ_{Y}^{T} \{ Occ_{Y}^{T} = \{3, 5\} \}$

Gapped Factors Occurrences

Occurrences of $AC = \{1, 3, 5\}$ Occurrences of $GTG = \{7, 9, 11\} \dashrightarrow \text{shift} \dashrightarrow \{3, 5, 7\}$ Intersection: $\{1, 3, 5\} \cap \{3, 5, 7\} = \{3, 5\}$

- Find the occurrences of the first factor (X_f) .
- Find the occurrences of the last factor (X_{ℓ}) .
- Perform a bit of shifting and then compute the intersection.

However, we need to do it now in the context of indexing!

GFI (Gapped Factor Index) Construction Algorithm

STEP 1:

- Build a suffix tree ST_T of T.
- Preprocess ST_T such that each internal node stores the range of leaves it corresponds to.

Why?: We will find the occurrence of X_{ℓ} using ST_{T} .

GFI (Gapped Factor Index) Construction Algorithm

STEP 2:

- Build a suffix tree $ST_{\overline{T}}$ of \overleftarrow{T} .
- The label of each leaf is replaced by $(n+1) actual_label + d + 1$.
- Preprocess $ST_{\overline{T}}$ such that each internal node stores the range of leaves it corresponds to.

Why?: We will find the occurrence of $\overleftarrow{X_f}$ using $ST_{\overleftarrow{T}}$. Finding these occurrences will be equivalent to finding the occurrences of X_f according to the desired shift.

GFI (Gapped Factor Index) Construction Algorithm

STEP 3:

Build a data structure to facilitate the intersection

First Step

First Step

Why the First Step?

SOFSEM 2007 - p.18/3

Second Step

Second Step

Now we have the followings:

- 1. We have an array \mathcal{L} and two indices i, j
- 2. we have an array $\overleftarrow{\mathcal{L}}$ and two indices k, l

3. We want the intersection of elements of $\mathcal{L}[i..j]$ and $\overleftarrow{\mathcal{L}}[k..l]$.

Our Goal: Preprocess $\overleftarrow{\mathcal{L}}$ and $\overleftarrow{\mathcal{L}}$ to give the Range Intersection.

Third Step

Transformation to Range Search Problem On Grid:

		1	2	3	4	5	6	7	8	9	10	11
\mathcal{L}	=	1	3	5	2	4	6	11	9	7	10	8
$\overleftarrow{\mathcal{L}}$	=	4	6	8	5	7	9	10	12	14	11	13
	=	_	_	_	5, 1	3,4	6, 2	9,5	11, 3	8, 6	10, 7	7, 10

Third Step

SOFSEM 2007 - p.24/34

We have $i, j \equiv 8, 9$ and $k, l \equiv 4, 6$. So we look for the points in the rectangle $(i, k) \times (j, l) \equiv (8, 4) \times (9, 6)$

Third Step

Final result: \checkmark \checkmark 1 2 3 4 5 6 7 8 9 10 11 $\mathcal{L} \atop \mathcal{L}$ 10 8 11 13= - - 5,1 3,4 6,2 9,5 11,3 8,6 10,7 7,10 $\times \times \times \times \times \times \times \checkmark \times \checkmark$ × = Х **Re-shifting:**

- $7 \to (7 d |X_f|) \to 3$
- $9 \to (9-d-|X_f|) \to 5$

Final Result

So the occurrences are 3 and 5 as can verified below: 3 4 5 6 8 10 11 2 7 9 1 $A \quad C \quad A \quad C \quad A \quad C \quad G \quad T \quad G \quad T$ G \mathcal{T} = $A \quad C \quad * \quad * \quad G \quad T \quad G$ X= X $A \quad C \quad * \quad *$ G= * *

- Construct suffix tree of T and do some preprocessing to get the list L
- Construct suffix tree of $\overleftarrow{\mathcal{T}}$ and do some preprocessing to get the list $\overleftarrow{\mathcal{L}}$
- Preprocess for Range Search on the Grid for ${\cal L}$ and $\overleftarrow{\cal L}$

- Find the occurrences of X_{ℓ} implicitly as two pointers i, j
- Find the (shifted) occurrences of $\overleftarrow{X_f}$ implicitly as two pointers k, ℓ
- Find the points in the rectangle $(i, k) \times (j, l)$.

A Pictorial Description

Running Time of GFI Construction

- 1. Both Suffix trees construction and preprocessing on them: O(n).
- 2. Preprocessing for the range search on Grid: $O(n \log^{1+\epsilon} n)$ (Alstrup et al.)

So total time: $O(n \log^{1+\epsilon} n)$ ($0 < \epsilon < 1$)

- **1.** Finding occurrences of X_{ℓ} : $O(|X_{\ell}|)$
- **2.** Finding occurrences of X_f according to the shift: $O(|X_f|)$
- 3. Finding the intersection results: $O(\log \log n + K)$, where *K* is the number of output.

So total time: $O(m + \log \log n + Occ_X^T)$

Peterlongo et. al gave a data structure, GFT, to index gapped factor:

- Construction cost: $O(\Sigma n)$
- Search Cost: $O(m + Occ_X^T)$

Previous Work and Comparison

- Construction cost of GFI is much better than that of GFT
- Search Cost GFI is slightly worse (log log n) than that of GFT
- GFT is fixed for k, k', d. GFI is only fixed for d.

- Extension of GFI to handle multiple strings
- Extension of GFI to handle document listing problem

End of Presentation

THANK YOU FOR YOUR PATIENCE