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Definitions:Text/String

• A sequence of zero or more symbols from an
alphabet Σ.

• Denoted by T [1..n] = T1T2 . . . Tn, where Ti ∈ Σ for
1 ≤ i ≤ n.

• The length of T is denoted by |T | = n.

•
←−
T denotes the reverse of the string T .

• Example: T = ACAAGTGCA is a text of length 9

• So,
←−
T = ACGTGAACA
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Definitions:Factors

T = ACAAGTGCA

• A string w is a factor of T if T = uwv for u, v ∈ Σ∗

• In this case, the string w occurs at position |u|+ 1
in T .

• w is denoted by T [|u|+ 1..|u|+ |w|].
• Example: w = AAG = T [3..5] is a factor of T
• A k-factor is a factor of length k.
• Example: w = AAG is a 3-factor of T
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Definitions: Prefix and Suffix

T = ACAAGTGCA

• A prefix of T is a factor T [1..y], 1 ≤ y ≤ n.
• Example: ACA is a prefix of T .
• ith prefix is the prefix ending at position i.
• Hence ACA is the 3rd prefix.
• A suffix of T is a factor T [x..n], 1 ≤ x ≤ n.
• Example: TGCA is a suffix of T
• ith suffix is the suffix starting at position i.
• Hence TGCA is the 6th suffix.

SOFSEM 2007 – p.4/34



Definitions: Gapped Factors

T = ACAAGTGCA

• gapped-factor is a concatenation of two factors
separated by a gap i.e. a block of don’t care
characters

• A don’t care character ‘∗’ can match any character
a ∈ Σ and ∗ /∈ Σ.

• CA ∗ ∗ ∗G is a gapped factor of T

1 2 3 4 5 6 7 8 9
T = A C A A G T G C A

C A ∗ ∗ ∗ G
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Definitions: (k − d− k′)-Gapped
Factors

• A (k − d− k′)-gapped-factor is a gapped-factor
where the length of the two sub-factors are,
respectively, k and k′ and the length of gaps is d.

• A (k − d− k′)-gapped-factor is X = Xf ∗
d Xℓ, where

Xf = X[1..k], Xf = X[k + d + 1..|X|] and ∗d denotes
the concatenation of d don’t care characters.

• X = CA ∗3 G is a (2− 3− 1)-gapped factor of T
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Definitions: Gapped Factors
Occurrence

• A (k − d− k′)-gapped-factor X is said to occur at
position i of a string Y if and only if:
1. we have an occurrence of Xf at position i and
2. we have an occurrence of Xℓ at position

i + k + d.
• The position i is said to be an occurrence of X in
T .

• We denote by OccT
X the set of occurrences of X in

T .
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Example: Gapped Factors
Occurrence

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T = A G G A C C G G G T T G A

X = G A C ∗ ∗ ∗ G T T G A

L99 k 99K L99 k′ 99K

X = G A

• We have GAC at position 3
• we have GTTGA at position 3 + k + d = 3 + 3 + 3 =

9
• So we have an occurrence of GAC ∗3 GTTGA at

position 3.
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Our Goal

• Present an efficient data structure to index gapped
factors
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The Main Idea

Goal: Finding the Occurrence of
X = Xf ∗

d Xℓ = AC ∗ ∗GTG in T = ACACACGTGTGTG

1: Compute OccT
Xf

{OccT
Xf

= {1, 3, 5}}

2: Compute OccT
Xℓ

{OccT
Xℓ

= {7, 9, 11}}
3: for i ∈ OccT

Xℓ
do

4: i = i− |Xf | − d{OccT
Xf

= {3, 5, 7}}
5: end for
6: Compute OccT

X = OccT
Xf

⋂
OccT

Xℓ
{OccT

X = {3, 5}}

7: return OccT
X {OccT

X = {3, 5}}
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Gapped Factors Occurrences

1 2 3 4 5 6 7 8 9 10 11 12 13

T = A C A C A C G T G T G T G

X = A C ∗ ∗ G T G

X = A C ∗ ∗ G T G

Occurrences of AC = {1, 3, 5}
Occurrences of GTG = {7, 9, 11} 99K shift 99K {3, 5, 7}
Intersection: {1, 3, 5}

⋂
{3, 5, 7} = {3, 5}
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The Main Idea

• Find the occurrences of the first factor (Xf ).

• Find the occurrences of the last factor (Xℓ)).
• Perform a bit of shifting and then compute the

intersection.

However, we need to do it now in the context of index-

ing!
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GFI (Gapped Factor Index)
Construction Algorithm

STEP 1:
• Build a suffix tree STT of T .
• Preprocess STT such that each internal node

stores the range of leaves it corresponds to.

Why?: We will find the occurrence of Xℓ using STT .
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GFI (Gapped Factor Index)
Construction Algorithm

STEP 2:
• Build a suffix tree ST←−

T
of
←−
T .

• The label of each leaf is replaced by
(n + 1)− actual_label + d + 1.

• Preprocess ST←−
T

such that each internal node
stores the range of leaves it corresponds to.

Why?: We will find the occurrence of
←−
Xf using ST←−

T
.

Finding these occurrences will be equivalent to finding

the occurrences of Xf according to the desired shift.
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GFI (Gapped Factor Index)
Construction Algorithm

STEP 3:
• Build a data structure to facilitate the intersection
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First Step

T = ACACACGTGTG

AC
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G
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First Step

T = ACACACGTGTG

AC

C
G
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TG$

8

TG
$

11

$

9

TG$

7

GTGTG$

6

AC

GTGTG$

ACGTGTG$

42

GTGTG$

5

CA

GTGTG$

3

ACGTGTG$

1

R

L = 1 → 3 → 5 → 2 → 4 → 6 → 11 → 9 → 7 → 10 → 8
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Why the First Step?

T = ACACACGTGTG,X = AC ∗ ∗GTG

Used to find the occurrences of Xℓ = GTG.
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Second Step

←−
T = GTGTGCACACA

A
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Second Step

←−
T = GTGTGCACACA

A
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L = 4→ 6→ 8→ 5→ 7→ 9→ 10→ 12→ 14→ 11→ 13
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Why the Second Step?

←−
T = GTGTGCACACA,X = AC ∗ ∗GTG

Used to find the occurrences of
←−
Xf = CA.
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←−
L = 4→ 6→ 8→ 5→ 7→ 9→ 10→ 12→ 14→ 11→ 13
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Third Step

Now we have the followings:

1. We have an array L and two indices i, j

2. we have an array
←−
L and two indices k, l

3. We want the intersection of elements of L[i..j] and
←−
L [k..l].

Our Goal: Preprocess
←−
L and

←−
L to give the Range In-

tersection.
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Third Step

Transformation to Range Search Problem On Grid:
1 2 3 4 5 6 7 8 9 10 11

L = 1 3 5 2 4 6 11 9 7 10 8
←−
L = 4 6 8 5 7 9 10 12 14 11 13

= − − − 5, 1 3, 4 6, 2 9, 5 11, 3 8, 6 10, 7 7, 10
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Third Step

(0, 0) 2 4 6 8 10
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Third Step

We have i, j ≡ 8, 9 and k, l ≡ 4, 6. So we look for the
points in the rectangle (i, k)× (j, l) ≡ (8, 4)× (9, 6)
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Third Step

Final result:
X X

1 2 3 4 5 6 7 8 9 10 11

L = 1 3 5 2 4 6 11 9 7 10 8
←−
L = 4 6 8 5 7 9 10 12 14 11 13

= − − − 5, 1 3, 4 6, 2 9, 5 11, 3 8, 6 10, 7 7, 10

= × × × × × × X × X × ×

Re-shifting:
7→ (7− d− |Xf |)→ 3

9→ (9− d− |Xf |)→ 5

SOFSEM 2007 – p.26/34



Final Result

So the occurrences are 3 and 5 as can verified below:
1 2 3 4 5 6 7 8 9 10 11

T = A C A C A C G T G T G

X = A C ∗ ∗ G T G

X = A C ∗ ∗ ∗ ∗ G
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Recap: GFI Construction Steps

• Construct suffix tree of T and do some
preprocessing to get the list L

• Construct suffix tree of
←−
T and do some

preprocessing to get the list
←−
L

• Preprocess for Range Search on the Grid for L
and

←−
L
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Recap: Search Steps

• Find the occurrences of Xℓ implicitly as two
pointers i, j

• Find the (shifted) occurrences of
←−
Xf implicitly as

two pointers k, ℓ

• Find the points in the rectangle (i, k)× (j, l).
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A Pictorial Description

A C

A C A C

G

T G

T

G

G

A C G T

∗∗

A

G T G

C

34567891011 12

3 4 5 6 7 8 9 10 1121

8

(n + 1) − 8 + d + 1 = 7

7

7 − k − d = 3

3
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Running Time of GFI Construction

1. Both Suffix trees construction and preprocessing
on them: O(n).

2. Preprocessing for the range search on Grid:
O(n log1+ǫ n) (Alstrup et al.)

So total time: O(n log1+ǫ n) (0 < ǫ < 1)
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Search Time

1. Finding occurrences of Xℓ: O(|Xℓ|)

2. Finding occurrences of Xf according to the shift:
O(|Xf |)

3. Finding the intersection results: O(log log n + K),
where K is the number of output.

So total time: O(m + log log n + OccTX)
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Previous Work and Comparison

Peterlongo et. al gave a data structure, GFT, to index
gapped factor:
• Construction cost: O(Σn)

• Search Cost: O(m + OccTX)
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• Previous Work and Comparison

• Construction cost of GFI is much better than that
of GFT

• Search Cost GFI is slightly worse (log log n) than
that of GFT

• GFT is fixed for k, k′, d. GFI is only fixed for d.
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Other Results in the paper

• Extension of GFI to handle multiple strings
• Extension of GFI to handle document listing

problem
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End of Presentation

THANK YOU
FOR YOUR PATIENCE
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