Indexing Factors with Gaps

M. Sohel Rahman and Costas S. Iliopoulos

Algorithm Design Group
Department of Computer Science
King's College London
www.dcs.kcl.ac.uk/adg

Definitions:Text/String

- A sequence of zero or more symbols from an alphabet Σ.
- Denoted by $\mathcal{T}[1 . . n]=\mathcal{T}_{1} \mathcal{T}_{2} \ldots \mathcal{T}_{n}$, where $\mathcal{T}_{i} \in \Sigma$ for $1 \leq i \leq n$.
- The length of \mathcal{T} is denoted by $|\mathcal{T}|=n$.
- $\overleftarrow{\mathcal{T}}$ denotes the reverse of the string \mathcal{T}.
- Example: $T=A C A A G T G C A$ is a text of length 9
- So, $\overleftarrow{T}=A C G T G A A C A$

Definitions:Factors

$T=A C A A G T G C A$

- A string w is a factor of \mathcal{T} if $\mathcal{T}=u w v$ for $u, v \in \Sigma^{*}$
- In this case, the string w occurs at position $|u|+1$ in \mathcal{T}.
- w is denoted by $\mathcal{T}[|u|+1 . .|u|+|w|]$.
- Example: $w=A A G=\mathcal{T}[3 . .5]$ is a factor of \mathcal{T}
- A k-factor is a factor of length k.
- Example: $w=A A G$ is a 3-factor of \mathcal{T}

Definitions: Prefix and Suffix

$T=A C A A G T G C A$

- A prefix of \mathcal{T} is a factor $\mathcal{T}[1 . . y], 1 \leq y \leq n$.
- Example: $A C A$ is a prefix of \mathcal{T}.
- i th prefix is the prefix ending at position i.
- Hence $A C A$ is the 3rd prefix.
- A suffix of \mathcal{T} is a factor $\mathcal{T}[x . . n], 1 \leq x \leq n$.
- Example: $T G C A$ is a suffix of \mathcal{T}
- i th suffix is the suffix starting at position i.
- Hence $T G C A$ is the 6th suffix.

Definitions: Gapped Factors

$T=A C A A G T G C A$

- gapped-factor is a concatenation of two factors separated by a gap i.e. a block of don't care characters
- A don't care character '*’ can match any character $a \in \Sigma$ and $* \notin \Sigma$.
- $C A * * * G$ is a gapped factor of \mathcal{T}

$$
\mathcal{T}=\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
A & C & A & A & G & T & G & C & A \\
& C & A & * & * & * & G & &
\end{array}
$$

Definitions: $\left(k-d-k^{\prime}\right)$-Gapped

- A $\left(k-d-k^{\prime}\right)$-gapped-factor is a gapped-factor where the length of the two sub-factors are, respectively, k and k^{\prime} and the length of gaps is d.
- A $\left(k-d-k^{\prime}\right)$-gapped-factor is $X=X_{f} *^{d} X_{\ell}$, where $X_{f}=X[1 . . k], X_{f}=X[k+d+1 . .|X|]$ and $*^{d}$ denotes the concatenation of d don't care characters.
- $X=C A *^{3} G$ is a (2-3-1)-gapped factor of \mathcal{T}

Definitions: Gapped Factors

Occurrence

- A $\left(k-d-k^{\prime}\right)$-gapped-factor X is said to occur at position i of a string Y if and only if:

1. we have an occurrence of X_{f} at position i and
2. we have an occurrence of X_{ℓ} at position $i+k+d$.

- The position i is said to be an occurrence of X in \mathcal{T}.
- We denote by $O c c_{X}^{T}$ the set of occurrences of X in \mathcal{T}.

Example: Gapped Factors

Occurrence

\mathcal{T}	$=$	1	2	3	4	5	6	7	8	9	10	11	12	13
X	$=$			G	A	C	C	G	G	G	T	T	G	A
				$\ldots-$	k	$--\rightarrow$				$*--$		k^{\prime}		$--\rightarrow$
X	$=$											G	A	

- We have $G A C$ at position 3
- we have $G T T G A$ at position $3+\mathrm{k}+\mathrm{d}=3+3+3=$ 9
- So we have an occurrence of $G A C *^{3} G T T G A$ at position 3.

Our Goal

- Present an efficient data structure to index gapped factors

The Main Idea

Goal: Finding the Occurrence of
$X=X_{f} *^{d} X_{\ell}=A C * * G T G$ in $\mathcal{T}=A C A C A C G T G T G T G$
1: Compute $O c c_{X_{f}}^{T}\left\{O c c_{X_{f}}^{T}=\{1,3,5\}\right\}$
2: Compute $O c c_{X_{\ell}}^{T}\left\{O c c_{X_{\ell}}^{T}=\{7,9,11\}\right\}$
3: for $i \in O c c_{X_{\ell}}^{T}$ do
4: $\quad i=i-\left|X_{f}\right|-d\left\{O c c_{X_{f}}^{T}=\{3,5,7\}\right\}$
5: end for
6: Compute $O c c_{X}^{T}=O c c_{X_{f}}^{T} \cap O c c_{X_{\ell}}^{T}\left\{O c c_{X}^{T}=\{3,5\}\right\}$
7: return $O c c_{X}^{T}\left\{O c c_{X}^{T}=\{3,5\}\right\}$

Gapped Factors Occurrences

$$
\begin{array}{rllllllllllllll}
& & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\mathcal{T} & = & A & C & A & C & A & C & G & T & G & T & G & T & G \\
X & = & & & A & C & * & * & G & T & G & & & & \\
X & = & & & & & A & C & * & * & G & T & G & &
\end{array}
$$

Occurrences of $A C=\{1,3,5\}$
Occurrences of $G T G=\{7,9,11\} \rightarrow$ shift $\rightarrow\{3,5,7\}$ Intersection: $\{1,3,5\} \cap\{3,5,7\}=\{3,5\}$

The Main Idea

- Find the occurrences of the first factor $\left(X_{f}\right)$.
- Find the occurrences of the last factor $\left(X_{\ell}\right)$).
- Perform a bit of shifting and then compute the intersection.

However, we need to do it now in the context of indexing!

GFI (Gapped Factor Index)

Construction Algorithm

STEP 1:

- Build a suffix tree $S T_{\mathcal{T}}$ of \mathcal{T}.
- Preprocess $S T_{\mathcal{T}}$ such that each internal node stores the range of leaves it corresponds to.

Why?: We will find the occurrence of X_{ℓ} using $S T_{\mathcal{T}}$.

GFI (Gapped Factor Index)

Construction Algorithm

STEP 2 :

- Build a suffix tree $S T_{\overleftarrow{\mathcal{T}}}$ of $\overleftarrow{\mathcal{T}}$.
- The label of each leaf is replaced by $(n+1)$ - actual_label $+d+1$.
- Preprocess $S T_{\overleftarrow{\mathcal{T}}}$ such that each internal node stores the range of leaves it corresponds to.

Why?: We will find the occurrence of $\overleftarrow{X_{f}}$ using $S T_{\overleftarrow{\mathcal{T}}}$. Finding these occurrences will be equivalent to finding the occurrences of X_{f} according to the desired shift.

GFI (Gapped Factor Index)
 Construction Algorithm

STEP 3:

- Build a data structure to facilitate the intersection

First Step

Why the First Step?

$$
\mathcal{T}=A C A C A C G T G T G, X=A C * * G T G
$$

Used to find the occurrences of $X_{\ell}=G T G$.

Second Step

Second Step

Why the Second Step?

$$
\overleftarrow{\mathcal{T}}=G T G T G C A C A C A, X=A C * * G T G
$$

Used to find the occurrences of $\overleftarrow{X_{f}}=C A$.

Third Step

Now we have the followings:

1. We have an array \mathcal{L} and two indices i, j
2. we have an array $\overleftarrow{\mathcal{L}}$ and two indices k, l
3. We want the intersection of elements of $\mathcal{L}[i . . j]$ and $\overleftarrow{\mathcal{L}}[k . . l]$.

Our Goal: Preprocess $\overleftarrow{\mathcal{L}}$ and $\overleftarrow{\mathcal{L}}$ to give the Range Intersection.

Third Step

Transformation to Range Search Problem On Grid:

\boldsymbol{L}	$=$
\mathbf{L}	1

Third Step

Third Step

We have $i, j \equiv 8,9$ and $k, l \equiv 4,6$. So we look for the points in the rectangle $(i, k) \times(j, l) \equiv(8,4) \times(9,6)$

Third Step

Final result:

\mathcal{L}	$=$	1	2	3	4	5	6	7	8	9	10	11
$\overleftarrow{\mathcal{L}}$	$=$	4	6	5	2	4	6	11	9	7	10	8
	$=$	-	-	-	5,1	3,4	6,2	9,5	11,3	8,6	10,7	7,10
	$=$	\times	\times	\times	\times	\times	\times	\checkmark	\times	\checkmark	\times	\times

Re-shifting:
$7 \rightarrow\left(7-d-\left|X_{f}\right|\right) \rightarrow 3$
$9 \rightarrow\left(9-d-\left|X_{f}\right|\right) \rightarrow 5$

Final Result

So the occurrences are 3 and 5 as can verified below:

\mathcal{T}	$=$	A	2	3	4	5	6	7	8	9	10	11
X	$=$			A	C	A	C	G	T	G	T	G
X	$=$				A	C	$*$	$*$	$*$	$*$	G	

Recap: GFI Construction Steps

- Construct suffix tree of \mathcal{T} and do some preprocessing to get the list \mathcal{L}
- Construct suffix tree of $\overleftarrow{\mathcal{T}}$ and do some preprocessing to get the list $\overleftarrow{\mathcal{L}}$
- Preprocess for Range Search on the Grid for \mathcal{L} and $\overleftarrow{\mathcal{L}}$

Recap: Search Steps

- Find the occurrences of X_{ℓ} implicitly as two pointers i, j
- Find the (shifted) occurrences of $\overleftarrow{X_{f}}$ implicitly as two pointers k, ℓ
- Find the points in the rectangle $(i, k) \times(j, l)$.

A Pictorial Description

Running Time of GFI Construction

1. Both Suffix trees construction and preprocessing on them: $O(n)$.
2. Preprocessing for the range search on Grid: $O\left(n \log ^{1+\epsilon} n\right)$ (Alstrup et al.)

So total time: $O\left(n \log ^{1+\epsilon} n\right)(0<\epsilon<1)$

Search Time

1. Finding occurrences of $X_{\ell}: O\left(\left|X_{\ell}\right|\right)$
2. Finding occurrences of X_{f} according to the shift: $O\left(\left|X_{f}\right|\right)$
3. Finding the intersection results: $O(\log \log n+K)$, where K is the number of output.

So total time: $O\left(m+\log \log n+O c c_{X}^{\mathcal{T}}\right)$

Previous Work and Comparison

Peterlongo et. al gave a data structure, GFT, to index gapped factor:

- Construction cost: $O(\Sigma n)$
- Search Cost: $O\left(m+O c c_{X}^{\mathcal{T}}\right)$

- Previous Work and Comparison

- Construction cost of GFI is much better than that of GFT
- Search Cost GFI is slightly worse $(\log \log n)$ than that of GFT
- GFT is fixed for k, k^{\prime}, d. GFI is only fixed for d.

Other Results in the paper

- Extension of GFI to handle multiple strings
- Extension of GFI to handle document listing problem

End of Presentation

THANK YOU
 FOR YOUR PATIENCE

