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MAX 2-SAT
 Input: A 2-CNF fomula F with weights

on clauses.
 Good assignment is one that maximizes

the sum of weights of satisfied clauses.
 Optimization Problem: Find a good

assignment.
 Counting Problem: Count the number of

such good assignments.
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An Example

 Let F = (x1∨x2)∧(¬x1∨¬x2)∧(x1∨¬x2)∧(¬x1).
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Status of Max 2-SAT
 NP-hard.
 Best approximation ratio known = 0.940.
 APX-hard with inapproximability ratio

21/22 (under P≠NP).
 Better hardness results under Unique

Game Conjecture.
 Counting version is #P-complete.
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Some Known Results

holds for binary-CSPO(219m/100)Scott, Sorkin 2006

m = #-clauses.O(2m/5.5)Kojevnikov, Kulikov 2006

CommentsTimeAuthors

n = #-variables,
exponential space

O(2wn/3)Williams 2004

Summary: For polynomial space algorithms with 
complexity measure n, not much is known.
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Our Contributions - I
 Obtain a worst case bound of
             O(2((d(F)-2)/(d(F)-1))n)
d(F) = average number of clauses that

a variable participates.
 The algorithm uses only polynomial

space.
 Same upper bound for both counting

and optimization problems.
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Our Contributions - II
 We obtain an O(2cn) upper bound if the

underlying constraint graph has a small
separator decomposition.

 Here c is some constant < 1 (i.e.,
independent of n).
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Our Contributions - III
 We introduce a new notion for gadget

reductions.

 This notion allows us to obtain same
upper bound for problems like

• Max k-SAT (k constant),
• Max Cut,
• Max k-Lin-2 (k constant).
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General Idea
 The algorithm uses a DPLL-like

recursive decomposition technique.
 The idea is to chose a variable v and

to recursively assign v to true and
false.

    (a.k.a. we branch on v)
 The aim is to minimize the number of

such branchings.
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Some Definitions
 Constraint graph: G(F) = (Var(F),E) where
 Var(F) = set of variables of F,
 E = {(u,v) | u,v appear in the same clause of F}.
 Problem 3-SAT:

Input: 3-CNF formula with weight w(l) on a
literal l.
Good assignment: An assignment M satisfying
all the clauses such that

W(M) = ∑(l satisfied by M)w(l) is maximized.
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Worst case bounds
 Step 1: Parsimonious reduction from

Max 2-SAT to 3-SAT.

 Step 2: Solve the 3-SAT instance.

Clause weighted
Literal weighted
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Parsimonious Reduction
Function Transform(F,F’)
1) For each clause C = (xi∨xj) in F add

a clause (xi∨xj∨dC) to F’.
2) Assign weights to literals in F’ as:

• 0 to any literal from {x1,…,xn,¬x1,…,¬xn}.
• w(C) (weight of clause C) to literal ¬dC.
• 0 to literal dC.
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Local Effects of Reduction

F F’

x1

x2 x3

x1

x3 x2

d1 d2

d3

Transform(F,F’)
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An Useful Trick
Let F = F1∧F2 and F1, F2 have exactly one common

variable (say u) then one can work with F1 (or
F2) and use the result to update weight of u.

F1 F2

u

Advantage: One can solve F1 and F2 separately.
First Noted by Dahllöf et al 2005.

Articulation point
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Algorithm Local-2-SAT
    If there exists an unassigned variable,

then
a) pick a variable v with lowest degree
in the graph induced by unassigned
variables.

  b) branch on all but one of v’s 
neighbors simultaneously.

Trick from the previous slide
saves one branching.
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Upper Bound on Running Time
 Theorem 1: Algorithm Local-2-SAT runs

in O(2((Δ(F)-2)/(Δ(F)-1))n) time, where Δ(F) is
the maximum degree in G(F).

   By a more careful analysis.
 Theorem 2: Algorithm Local-2-SAT runs

in time O(2((d(F)-2)/(d(F)-1))n), where d(F) is
the average degree in G(F).
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Separator Decomposition
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Algorithm Global-2-SAT
1) Recursively find a separator in the

graph.
2) Branch on these vertices

simultaneously.
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Global-2-SAT for Separable
Graphs
Theorem 3: If G(F) has a small separator

decomposition (i.e., every sub-graph of
size k has a separator of size ηku with
O<u<1), then Global-2-SAT runs in

O(2nuη/(1-ρu)) time.
 A constant < 1 arising out of 

splitting ratio. 
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Global-2-SAT worst case
bounds
 For many classes of graphs no small

separators exist.
 For these graphs we use BFS to obtain a

separator.
Theorem 4: Algorithm Global-2-SAT runs

in O(2((Δ(F)-2)/(Δ(F)-1))n+(Δ(F)+1)log n) time.
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Gadgets
 Gadgets (α-gadgets) introduced by

Trevisan et al. defines a reduction from
a constraint function to a constraint
family.

 We parameterize gadgets by two
parameters α, β.

 Advantage: Allows compositions of
gadgets.
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Definition of (α,β)-gadgets
A (α,β)-gadget for α, β ∈ ℜ+, reduces a
constraint function f:{0,1}n->{0,1} to a
constraint family H such that,

a) the result is a finite collection of
constraints {C1,…,Cβ’} from H over input
variables x1,…,xn and auxiliary variables
y1,…,ym. 
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Definition Contd…
b) The weights {w1,…,wβ’} are assigned

such that
w1+w2+…+wβ’ = β.

and for Boolean assignments A to x1,…,xn
and B to y1,…,ym:

     (∀A: f(A) = 1) maxB(∑iwiCi(A,B)) = α,
   (∀B: f(A) = 0) maxB(∑iwiCi(A,B)) = α-1.
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Use of Gadgets

(α,β)P Max 2-SAT
(instance F)

Max 2-SAT on F has optimum value αW.
Any solution value S for F corresponds to 
solution value S-(α-1)W in P.

Parameter β helps us to chain
these reductions.

Sum of constraint
weights in P(Opt problem)
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Results with Gadgets

f ∈ H1 H2

g ∈ H2 H3

(α1,β1)

(α2,β2)
f ∈ H1 H3

(β1(α2-1)+α1,β1β2)

(3.5(k-2),4(k-2))

(2,2) Max 2-SAT

Max 2-SAT

Final result: Same upper bound for these problems.

Max Cut

Max k-SAT
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Some Open Problems
 Is there an O(2cn) time algorithm for Max 2-

SAT?

 Easier problem: Exponential time algorithm for
(1-ε) approximation?



Thank you


