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The problem
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i=1

ajixi ≤ bj j = (1, 2, ...,m)

0 ≤ xi ≤ ui integer

where

ci ≥ 0, di ≥ 0, aji ≥ 0, bj ≥ 0, ui ≤ (ci/2di)

We are interested in an integer quadratic
multi-knapsack problem with a separable
objective function.

NP-hard problem

Our aim : develop a practical method to solve to
optimality (QMKP )
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Notations

Let (P ) be a pure integer or 0 − 1 program

Let (P ) be the LP relaxation of (P )

Z[P ] : optimal value of the problem (P )

Z[P ] : optimal value of (P ).
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Branch-and-bound algorithm

A feasible solution

A tight upper bound at each node of the search tree

Before starting the branch-and-bound procedure :
preprocessing techniques
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Standard B&B approach (SBB)

Quadratic concave objective function subject to m
linear constraints

Z[QMKP ] : upper bound

Cplex9.0.
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A 0-1 linearization B&B (LBB)

Transform (QMKP ) into a 0-1 equivalent problem :

direct expansion : re-write the integer variables
into 0-1 variables

piecewise linear interpolation

Mathur and Salkin (1983) : branch-and-bound to
solve the single constraint integer quadratic
knapsack (QKP )
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A 0-1 linearization B&B (LBB)

0 1 k − 1 k ui
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2
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fiui
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fi1 = ci.1 − di.1
2

sikyik = (fik − fi,k−1)yik

fi,k−1 = ci(k − 1) − di(k − 1)2
fik = cik − dik
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A 0-1 linearization B&B (LBB)

(MKP )
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Proposition : Z[MKP ] ≤ Z[QMKP ]
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Djerdjour et al. algorithm UB

w ≥ 0

(QMKP ) andZ[QMKP ] the optimal value

(MKP ) equivalent 0-1 formulation of(QMKP )

Z[MKP ] the optimal value

Equivalence

(KP, w) surrogate relaxation of(MKP )

Z[KP, w∗] the optimal value of the continuous relaxation of(KP, w∗)

minw Z[KP, w]≤Z[MKP ]

Surrogate relaxation

Z[MKP ] = Z[QMKP ]
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Djerdjour et al. algorithm (DMS)
Surrogate relaxation : transform the m constraints of (MKP ) into one constraint
(called surrogate constraint) ;

Surrogate multiplier : w = (w1, ..., wj , ..., wm) ≥ 0 ;

(MKP ) becomes :

(KP,w)
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Z[MKP ] ≤ Z[KP, w]

How to find a good surrogate multiplier w∗ ?
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How to find w∗ ? (DMS)

Let us consider : Z[KP,w]

Solving (SD) = minw≥0 Z[KP,w]

(SD) is called the surrogate dual

Problem easy to solve :

The objective function of (SD) is quasi-convexe

Local descent method

w∗ is a global mimimum
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The proposedB&B

Improving the upper bound of (DMS)

Decreasing the computational time

Getting a tighter upper bound

A heuristic to compute a feasible solution

Pre-processing procedures
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Decreasing the computational time

Proposition 1
If w∗ is the dual optimal solution of (MKP ) then the
optimal value of (MKP ) is equal to the optimal
value of (KP,w∗) that is :
Z[MKP ] = Z[KP,w∗]

Decreasing the computational time of w∗

w∗ : dual optimal solution of (MKP )
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Getting a tighter upper bound

Improving the upper bound value

Z[KP,w∗] : an improved upper bound

Analytically the upper bound is improved.
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Analytical comparison of the upper bounds
Upper bound+∞

(QMKP )

Problem

(KP, w∗)

(KP, w∗)

(MKP )

(QMKP )

Z[QMKP ]

[LP relaxation]

[Djerdjour at al. 1988]

Z[KP, w∗]

Z[MKP ]

[Linearized formulation]

Linearized optimum

Quadratic optimum

=

=

m

(MKP )

[Our approach]

Z[KP, w∗]
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x
"good" feasible solution  x1 in {2; 3}

x2 in {5; 6}
x3 in {3, 4}

continuous optimum x1 = 2.9
x2 = 5.2
x3 = 3.7

x

x1

2

3



Pre-processing procedures

Detecting some redundant constraints

Reducing the bounds of integer variables :
contraints pairing procedure, Hammer et al. (1975).

Simultaneously fixing some 0-1 variables to 0

SOFSEM 2007, 07/01/20-07/01/26, – p.17/23



Computational results

square problems (n = m)

problems are randomly generated in the interval
[0, 100] according to an uniform law

average % of pure integer variables : 40% for
squared problems

average value of ui : 22 for squared problems.
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Average CPU time of the 4B&B

n m Our BB LBB SBB DMS

100 100 1.5 1.3 7.8 208.257
500 500 29.3 120.1 19.1 -
1000 1000 50.5 264.4 282.3 -
1500 1500 183.7 392.5 1178.4 -
2000 2000 305.2 1369.4 2557.9 -

“-” : optimum not reached in a limit time of 3 hours
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Analyzing the computational results

The improvement capability of our B&B can be
explained by three features, namely :

1. the feasible solution

2. the upper bound

3. the pre-processing procedures
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The upper bound

Av. deviation to the opt. (%) CPU time (sec.)

Our BB LBB=DMS SBB Our BB LBB SBB DMS

n m

100 100 8.2 9.5 16.9 0.0 0.0 0.0 0.3

500 500 7.5 7.9 12.9 0.2 0.1 7.3 9.0

1000 1000 21.7 23.0 32.2 0.5 0.5 58.2 37.9

1500 1500 23.9 24.6 37.8 1.6 1.5 184.5 86.6

2000 2000 36.2 36.9 53.0 3.6 3.4 421.3 157.8

SOFSEM 2007, 07/01/20-07/01/26, – p.21/23



The pre-processing procedures

Detecting some redundant constraints : on average
52% of the constraints may be removed

Reducing the bounds of integer variables : the
average proportion of pure integer variables has
decreased from 40% to 21.02%

Simultaneously fixing some 0-1 variables to 0 :
50.25% of 0-1 variables are fixed
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Conclusions and future works

Conclusions

Our B&B allowed us to solve large scale
instances : up to 2000 variables within 306 s on
average (largest problems)

(LBB) is a possible alternative to solve (QMKP )

(SBB) and (DMS) can be used only for small
instances

Future works

Improve our upper bound

Solve a nonseparable quadratic multi-knapsack
problem
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