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Parameterized Complexity

Downey and Fellows: Parameterized Complexity, 1999.
Flum and Grohe: Parameterized Complexity Theory, 2006.
Niedermeier: Invitation to Fixed-Parameter Algorithms, 2006.

Analyze complexity in n and a parameter k

L with parameter k is in FPT <
L can be solved in time O(f(k) - poly(n))

Hierarchy: FPT CW[1] CW[2] C ...
Seemingly, L cannot be in FPT if it is W[1]-hard



Complete vs. Partial Solutions

Problem Parameter Best result Reference
vVC k O(1.2738% + kn) Chen et al.
t-VC k WI[1]-hard Guo et al.
t-VC t 0(2.0911!n(n+ m)k) ISAAC’06
DS k W[2]-complete DF99
t-DS k WI2]-hard (obvious)
t-DS t O((4 + ¢)tpoly(n)) (today)



Algorithmics for t-Vertex Cover

Method Result Reference
Color-Coding 5.4366' - poly(n) M. Blaser
Random Separation 4.0000! - poly(n) Cai et al.

Randomized Branching 2.0911!- poly(n) ISAAC’06
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© Randomly color G in black and white.

® Recursively check for a black [k/2]-node path and a white
| k/2]-node path that combine to form a k-node path in G.

— Randomized O(4* - poly(n)) algorithm [WG 2006]



Divide-and-Color

Applied to t-DOMINATING SET:

© Randomly color G in black and white.

® Recursively check for a black [t/2]-DS and a white
|t/2]-DS whose combined size is < k.

— Randomized O(4! - poly(n)) algorithm?



Unbalanced Solutions

Letk=2,t=10:

Every t-DS of size k is unbalanced.



Unbalanced Solutions

What if all minimum solutions are unbalanced?

e PARTITION: Imbalance requires large numbers
¢ {-DS: Imbalance requires high-degree nodes

— A small fraction of a solution yields a t/2-DS



Unbalanced Solutions

We define a-balance:

|a_t|

4/2
o

at

Lemma: -3 a-balanced solution = 3 t/2-DS of size 3 := [5-]



Towards an Algorithm

TDS(G, 1):

if 3 small solution D then return D; fi;
if | V| = () then return oc; fi
Kopt := o0;
for 4 - 2! times do
color G;
Kopt < <Handle the unbalanced case>;
Kopt < <Handle the balanced case>;
endfor;
return kopt;



Correctness

Lemma
TDS(G, t) returns the size of a minimum t-DS with prob. > .

Unbalanced case: Balanced case:
e Good coloring: 2! e Good coloring: 2!
* Recursive call: } * Recursive call: § -}
e Total failure probability: e Total failure probability:

(1 _ 271 . %)4-21 < 672 (1 o 2ft . %)4-2[ < ef‘l



Runtime Bound

Recall a-balance:

o

t/2
v

at

Lemma
TDS(G, t) performs < 40+ . 8 recursive calls.



Main Result

Theorem

Let0 < o < 1/25. --DOMINATING SET can be solved with
exponential small error probability in time

O((4 + 6a)' - 18 - nlza)+1).

Derandomized: O((16 + ¢)!poly(n))



