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VERTEX COVER (VC):

Cover all edges.

DOMINATING SET (DS):
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Parameterized Complexity

Downey and Fellows: Parameterized Complexity, 1999.
Flum and Grohe: Parameterized Complexity Theory, 2006.
Niedermeier: Invitation to Fixed-Parameter Algorithms, 2006.

• Analyze complexity in n and a parameter k
• L with parameter k is in FPT :⇔

L can be solved in time O(f (k) · poly(n))

• Hierarchy: FPT ⊆W[1] ⊆W[2] ⊆ . . .

• Seemingly, L cannot be in FPT if it is W[1]-hard
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Complete vs. Partial Solutions

Problem Parameter Best result Reference

VC k O(1.2738k + kn) Chen et al.
t-VC k W[1]-hard Guo et al.
t-VC t O(2.0911tn(n + m)k) ISAAC’06

DS k W[2]-complete DF99
t-DS k W[2]-hard (obvious)
t-DS t O((4 + ε)tpoly(n)) (today)



Algorithmics for t-Vertex Cover

Method Result Reference

Color-Coding 5.4366t · poly(n) M. Bläser
Random Separation 4.0000t · poly(n) Cai et al.
Randomized Branching 2.0911t · poly(n) ISAAC’06



Divide-and-Color

LONGEST PATH: Does G = (V , E) contain a k -node path?

1 Randomly color G in black and white.
2 Recursively check for a black dk/2e-node path and a white
bk/2c-node path that combine to form a k -node path in G.

−→ Randomized O(4k · poly(n)) algorithm [WG 2006]
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Divide-and-Color

Applied to t -DOMINATING SET:

1 Randomly color G in black and white.
2 Recursively check for a black dt/2e-DS and a white
bt/2c-DS whose combined size is ≤ k .

−→ Randomized O(4t · poly(n)) algorithm?



Unbalanced Solutions

Let k = 2, t = 10:

Every t-DS of size k is unbalanced.



Unbalanced Solutions

What if all minimum solutions are unbalanced?

t/2

• PARTITION: Imbalance requires large numbers
• t-DS: Imbalance requires high-degree nodes

−→ A small fraction of a solution yields a t/2-DS



Unbalanced Solutions

We define α-balance:

t/2

αt

αt

Lemma: ¬∃ α-balanced solution⇒ ∃ t/2-DS of size β := d 1
2αe



Towards an Algorithm

TDS(G, t):

if ∃ small solution D then return D; fi;
if |V | = ∅ then return∞; fi
kopt :=∞;
for 4 · 2t times do

color G;
kopt ← <Handle the unbalanced case>;
kopt ← <Handle the balanced case>;

endfor;
return kopt ;



Correctness

Lemma
TDS(G, t) returns the size of a minimum t-DS with prob. ≥ 1

2 .

Unbalanced case:
• Good coloring: 2−t

• Recursive call: 1
2

• Total failure probability:

(1− 2−t · 1
2
)4·2t ≤ e−2

Balanced case:
• Good coloring: 2−t

• Recursive call: 1
2 ·

1
2

• Total failure probability:

(1− 2−t · 1
4
)4·2t ≤ e−1



Runtime Bound

Recall α-balance:

t/2

αt

αt

Lemma
TDS(G, t) performs ≤ 4(1+α)t · t6 recursive calls.



Main Result

Theorem
Let 0 < α ≤ 1/25. t -DOMINATING SET can be solved with
exponential small error probability in time

O((4 + 6α)t · t6 · nb 1
2α

c+1).

Derandomized: O((16 + ε)tpoly(n))


