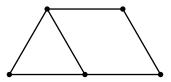
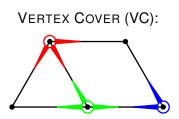

Partial vs. Complete Domination: t-DOMINATING SET

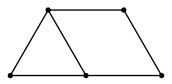
Joachim Kneis Daniel Mölle Peter Rossmanith


Theory Group, RWTH Aachen University

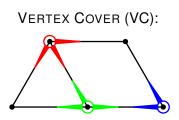
January 22, 2007


Cover all edges.

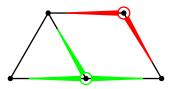
DOMINATING SET (DS):


Dominate all nodes.

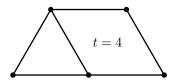
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @


Cover all edges.

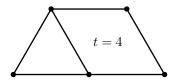
DOMINATING SET (DS):


Dominate all nodes.

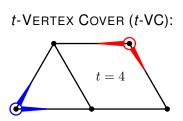
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @


Cover all edges.

DOMINATING SET (DS):

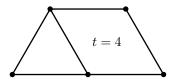

Dominate all nodes.

t-VERTEX COVER (*t*-VC):

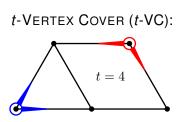


Cover t edges.

t-DOMINATING SET (*t*-DS):

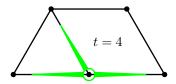


Dominate t nodes.



Cover t edges.

t-DOMINATING SET (*t*-DS):



Dominate t nodes.

Cover t edges.

t-DOMINATING SET (*t*-DS):

Dominate t nodes.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Analyze complexity in n and a parameter k
- L with parameter k is in FPT :⇔
 L can be solved in time O(f(k) · poly(n))
- Hierarchy: $\mathsf{FPT} \subseteq \mathsf{W}[1] \subseteq \mathsf{W}[2] \subseteq \ldots$
- Seemingly, L cannot be in FPT if it is W[1]-hard

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Analyze complexity in *n* and a parameter *k*
- *L* with parameter *k* is in FPT :⇔
 L can be solved in time O(f(k) · poly(n))
- Hierarchy: $\mathsf{FPT} \subseteq \mathsf{W}[1] \subseteq \mathsf{W}[2] \subseteq \dots$
- Seemingly, L cannot be in FPT if it is W[1]-hard

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Analyze complexity in n and a parameter k
- *L* with parameter *k* is in FPT :⇔
 L can be solved in time O(f(k) · poly(n))
- Hierarchy: $FPT \subseteq W[1] \subseteq W[2] \subseteq \dots$
- Seemingly, *L* cannot be in FPT if it is W[1]-hard

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

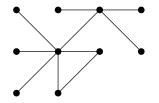
- Analyze complexity in n and a parameter k
- *L* with parameter *k* is in FPT :⇔
 L can be solved in time O(f(k) · poly(n))
- Hierarchy: $FPT \subseteq W[1] \subseteq W[2] \subseteq \dots$
- Seemingly, *L* cannot be in FPT if it is W[1]-hard

(ロ) (同) (三) (三) (三) (○) (○)

- Analyze complexity in n and a parameter k
- *L* with parameter *k* is in FPT :⇔
 L can be solved in time O(f(k) · poly(n))
- Hierarchy: $FPT \subseteq W[1] \subseteq W[2] \subseteq \dots$
- Seemingly, L cannot be in FPT if it is W[1]-hard

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

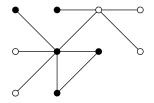
Problem	Parameter	Best result	Reference
VC	k	$O(1.2738^k + kn)$	Chen et al.
t-VC	k	W[1]-hard	Guo et al.
t-VC	t	$O(2.0911^t n(n+m)k)$	ISAAC'06
DS	k	W[2]-complete	DF99
t-DS	k	W[2]-hard	(obvious)
t-DS	t	$O((4 + \varepsilon)^t poly(n))$	(today)


Algorithmics for *t*-Vertex Cover

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

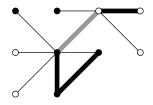
Method	Result	Reference
Color-Coding	5.4366 ^t · poly(n)	
Random Separation	$4.0000^t \cdot poly(n)$	Cai et al.
Randomized Branching	$2.0911^t \cdot poly(n)$	ISAAC'06

(日) (日) (日) (日) (日) (日) (日)


LONGEST PATH: Does G = (V, E) contain a *k*-node path?

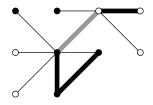
- **1** Randomly color *G* in black and white.
- 2 Recursively check for a black $\lceil k/2 \rceil$ -node path and a white $\lfloor k/2 \rfloor$ -node path that combine to form a *k*-node path in *G*.
- \longrightarrow Randomized $O(4^k \cdot poly(n))$ algorithm [WG 2006]

(日) (日) (日) (日) (日) (日) (日)


LONGEST PATH: Does G = (V, E) contain a *k*-node path?

- 1 Randomly color *G* in black and white.
- 2 Recursively check for a black $\lceil k/2 \rceil$ -node path and a white $\lfloor k/2 \rfloor$ -node path that combine to form a *k*-node path in *G*.
- \longrightarrow Randomized $O(4^k \cdot poly(n))$ algorithm [WG 2006]

(日) (日) (日) (日) (日) (日) (日)

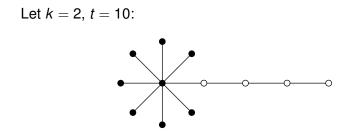

LONGEST PATH: Does G = (V, E) contain a *k*-node path?

- 1 Randomly color *G* in black and white.
- 2 Recursively check for a black $\lceil k/2 \rceil$ -node path and a white $\lfloor k/2 \rfloor$ -node path that combine to form a *k*-node path in *G*.

 \longrightarrow Randomized $O(4^k \cdot poly(n))$ algorithm [WG 2006]

LONGEST PATH: Does G = (V, E) contain a *k*-node path?

- **1** Randomly color *G* in black and white.
- 2 Recursively check for a black $\lceil k/2 \rceil$ -node path and a white $\lfloor k/2 \rfloor$ -node path that combine to form a *k*-node path in *G*.
- \longrightarrow Randomized $O(4^k \cdot poly(n))$ algorithm [WG 2006]


(ロ) (同) (三) (三) (三) (○) (○)

Applied to *t*-DOMINATING SET:

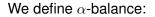
- 1 Randomly color *G* in black and white.
- 2 Recursively check for a black $\lceil t/2 \rceil$ -DS and a white $\lfloor t/2 \rfloor$ -DS whose combined size is $\leq k$.
- \longrightarrow Randomized $O(4^t \cdot poly(n))$ algorithm?

Unbalanced Solutions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Every *t*-DS of size *k* is *unbalanced*.

Unbalanced Solutions


What if all minimum solutions are unbalanced?

- PARTITION: Imbalance requires large numbers
- t-DS: Imbalance requires high-degree nodes
- \longrightarrow A small fraction of a solution yields a t/2-DS

Unbalanced Solutions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lemma: $\neg \exists \alpha$ -balanced solution $\Rightarrow \exists t/2$ -DS of size $\beta := \lceil \frac{1}{2\alpha} \rceil$

Towards an Algorithm

(日) (日) (日) (日) (日) (日) (日)

TDS(*G*, *t*):

if \exists small solution *D* then return *D*; fi; if $|V| = \emptyset$ then return ∞ ; fi $k_{opt} := \infty$; for $4 \cdot 2^t$ times do color *G*; $k_{opt} \leftarrow <$ Handle the unbalanced case>; $k_{opt} \leftarrow <$ Handle the balanced case>; endfor; return k_{opt} ;

Correctness

Lemma TDS(G, t) returns the size of a minimum t-DS with prob. $\geq \frac{1}{2}$.

Unbalanced case:

- Good coloring: 2^{-t}
- Recursive call: $\frac{1}{2}$
- Total failure probability:

$$(1-2^{-t}\cdot \frac{1}{2})^{4\cdot 2^t} \leq e^{-2}$$

Balanced case:

- Good coloring: 2^{-t}
- Recursive call: $\frac{1}{2} \cdot \frac{1}{2}$
- Total failure probability:

$$(1-2^{-t}\cdot rac{1}{4})^{4\cdot 2^t} \leq e^{-1}$$

(日) (日) (日) (日) (日) (日) (日)

Runtime Bound

Recall α -balance:

Lemma TDS(G, t) performs $\leq 4^{(1+\alpha)t} \cdot t^6$ recursive calls.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Main Result

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem Let $0 < \alpha \le 1/25$. t-DOMINATING SET can be solved with exponential small error probability in time

$$O((4+6\alpha)^t \cdot t^6 \cdot n^{\lfloor \frac{1}{2\alpha} \rfloor+1}).$$

Derandomized: $O((16 + \varepsilon)^t poly(n))$