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joint work with G. Gössler, S. Graf, M. Martens, and J. Sifakis

January 21, 2007

Mila Majster-Cederbaum A Framework for Component-Based Systems



System Views

Object-Oriented

call method A
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System Views

Object-Oriented Component-Based

call method A

O1

“Glue Code”
O2

Methods: A, B ,...

Interface

Ports

Ports

O1 depends on Components do not refer to other
the existence of O2 components. They offer ports

and may be glued together.
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Many approaches consider a component as a “black box”.
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Many approaches consider a component as a “black box”.

If we want to study properties of component-based systems more
information is needed.
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Our Model: Interaction Systems

Interaction Systems

◮ Each component is given by: a “frame” + “local behavior”.

◮ The glue is modelled via “connectors”.

This means: there are three independent description levels.
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Static ingredients of our Model

◮ a set K of components, w.l.o.g. K = {1, ..., n}
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ports belong to the same component, e.g. c = {a1, a2, a3},
ai ∈ Ai . A connector designates actions that should be
performed conjointly.
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Static ingredients of our Model

◮ a set K of components, w.l.o.g. K = {1, ..., n}

◮ each component i ∈ K has a set Ai of ports (actions),
Ai ∩ Aj = ∅ for i 6= j

◮ a connector c is a finite nonempty set of ports, where no two
ports belong to the same component, e.g. c = {a1, a2, a3},
ai ∈ Ai . A connector designates actions that should be
performed conjointly.

◮ if ∅ 6= α ⊆ c , α is called an interaction. If ai ∈ Ai ∩ α, we say
that i participates in α and put i(α) = ai .

◮ a connector set C = {c1, c2, . . .} such that
1) ci 6⊆ cj 2)

⋃

c∈C

c =
⋃

i∈K

Ai

◮ connectors are also referred to as maximal interactions

◮ a set Comp of interactions α that are called complete. If
α ⊂ c is complete then α may proceed no matter if the
missing actions of c are available or not.
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Example - The Dining Philosophers

We model the problem of n philosophers.
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Example - The Dining Philosophers

We model the problem of n philosophers.
There are the following types of components:

◮ n components pi for 0 ≤ i ≤ n − 1 representing the
philosophers. The ports for pi are
{activatei , enteri , get

i
i , get

i+1
i , eati , put i

i , put i+1
i , leavei}.

◮ n components fi for 0 ≤ i ≤ n − 1 representing the forks. The
ports for fi are {geti , puti}.

◮ One component control . It controls when a philosopher may
enter the room in which the table is located. Its ports are
{enter , leave}.
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Example - The Dining Philosophers, Static View

Part of the picture : the philosophers, the control and some
connectors. Any nonempty subset of {eat0, eat1, ..., eatn−1} is
declared complete.

p0 pi pn−1

control

eat0 eati eatn−1

enter0
enteri entern−1

enter

{eat0, . . . , eatn−1}

{enter0, enter}

{enteri , enter}

{entern−1, enter}
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Dynamics of our Model

◮ each component i has a local behavior given by a transition
system Ti = (Qi ,→i ) where →i⊆ Qi × Ai × Qi and Ai is the
(local) port set of i . It is assumed that every state offers some
action.
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◮ each component i has a local behavior given by a transition
system Ti = (Qi ,→i ) where →i⊆ Qi × Ai × Qi and Ai is the
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action.
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Dynamics of our Model

◮ each component i has a local behavior given by a transition
system Ti = (Qi ,→i ) where →i⊆ Qi × Ai × Qi and Ai is the
(local) port set of i . It is assumed that every state offers some
action.

◮ the behavior of the global system is then

T =



Q1 × Q2 × . . . Qn
︸ ︷︷ ︸

Q

,→





with
q = (q1, q2, . . .)

α
→ q′ =

(
q′
1, q

′
2, . . .

)

where α is an interaction and
◮ qi = q′

i if component i does not participate in α

◮ qi
ai→ q′

i if ai ∈ α
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Definition Interaction Systems

An Interaction System is given by

Sys = (K ,C ,Comp,T )

where

K , C , and Comp constitute the static part of the system

and

T constitutes the dynamic part of the system.
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Example - The Dining Philosophers, Dynamics

The behavior of philosopher pi is given by:

pi ,0 pi ,1

pi ,2

pi ,3

pi ,4pi ,5

pi ,6

pi ,7

activatei

enteri

get i
i

get i+1 mod n
i

eati

put i
i

put i+1 mod n
i

leavei
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Example - The Dining Philosophers, Dynamics

The behavior of fork fi is given by:

fi ,0

fi ,1

getiputi
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Example - The Dining Philosophers, Dynamics

The behavior of control is given by:

c0 c1 cn−1

enter

leave

enter

leave

enter

leave
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Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

Mila Majster-Cederbaum A Framework for Component-Based Systems



Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}
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Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}

◮ {enter , enteri}
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There are the following connectors:
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Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}

◮ {enter , enteri}

◮ {leave, leavei}

◮

{
get i

i , geti
}

◮

{
put i

i , puti
}

◮

{

get i+1 mod n
i , geti+1 mod n

}

◮

{

put i+1 mod n
i , puti+1 mod n

}

for 0 ≤ i ≤ n − 1
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Example - The Dining Philosophers, Global Transitions

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll
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Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{activate0, activate1, activate2}
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Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{enter1, enter}
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Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0
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a1

e1

g1
1

g2
1

eat1
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1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2
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{
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Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{enter2, enter}
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Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{
get2

1 , get2
}

Mila Majster-Cederbaum A Framework for Component-Based Systems



Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{eat1} and so on
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Properties of
Interaction Systems
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Interesting properties of interaction systems are

◮ local/global deadlock-freedom

◮ liveness of components

◮ progress of components

◮ robustness against failure of components
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Properties

Properties of
Interaction Systems

Interesting properties of interaction systems are

◮ local/global deadlock-freedom

◮ liveness of components

◮ progress of components

◮ robustness against failure of components

◮ availability

Here we treat liveness.
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P-Deadlock-Freedom

A predicate P on the state space Q is inductive if

1. P 6≡ false

2. P (q) ∧ q
α
→ q′ ⇒ P (q′) for α ∈ C ∪ Comp
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A predicate P on the state space Q is inductive if

1. P 6≡ false

2. P (q) ∧ q
α
→ q′ ⇒ P (q′) for α ∈ C ∪ Comp

From now on let P be an inductive predicate on Q.
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P-Deadlock-Freedom

A predicate P on the state space Q is inductive if

1. P 6≡ false

2. P (q) ∧ q
α
→ q′ ⇒ P (q′) for α ∈ C ∪ Comp

From now on let P be an inductive predicate on Q.

Sys is called P-deadlock-free if for every global state q with
P (q) = true there is a transition

q
α
→ q′

with α ∈ C ∪ Comp.
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Liveness

Let Sys = (K ,C ,Comp,T ) be a P-deadlock-free interaction
system.
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Liveness

Let Sys = (K ,C ,Comp,T ) be a P-deadlock-free interaction
system.
A run is an infinite transition sequence

σ := q0
α0→ q1

α1→ q2
α2→ . . . αi ∈ C ∪ Comp.
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Liveness

Let Sys = (K ,C ,Comp,T ) be a P-deadlock-free interaction
system.
A run is an infinite transition sequence

σ := q0
α0→ q1

α1→ q2
α2→ . . . αi ∈ C ∪ Comp.

K ′ ⊆ K is called is called P-live if every run with P(q0)

σ := q0
α0→ q1

α1→ q2
α2→ . . . αi ∈ C ∪ Comp

of Sys encompasses an infinite number of transitions labelled with
an interaction where some i ∈ K ′ participates.
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NP-Hardness

Testing properties is expensive (“state-space-explosion”).
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NP-Hardness

Testing properties is expensive (“state-space-explosion”).

We have shown e.g. that deciding

◮ deadlock-freedom

◮ liveness

is NP-hard.

Proposed solutions:

◮ establish conditions that can be tested in polynomial time and
imply the desired properties
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NP-Hardness

Testing properties is expensive (“state-space-explosion”).

We have shown e.g. that deciding

◮ deadlock-freedom

◮ liveness

is NP-hard.

Proposed solutions:

◮ establish conditions that can be tested in polynomial time and
imply the desired properties

◮ exploit compositionality
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A Sufficient Criterion for Liveness

Let Sys be an interaction system with set K of components with
alphabets Ai , where i ∈ K .
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A Sufficient Criterion for Liveness

Let Sys be an interaction system with set K of components with
alphabets Ai , where i ∈ K . A ⊂ Aj is inevitable in Tj if every
infinite path in Tj encompasses an infinite number of transitions
labelled with some action in A.
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Let Sys be an interaction system with set K of components with
alphabets Ai , where i ∈ K . A ⊂ Aj is inevitable in Tj if every
infinite path in Tj encompasses an infinite number of transitions
labelled with some action in A. Let

G = (K ,→)

where

i → j ⇔ Aj\ excl (i) [j]
︸ ︷︷ ︸

is inevitable in Tj
︸︷︷︸

local condition
all aj that occur

in some α

in which i does
does not participate
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A Sufficient Criterion for Liveness

Let Sys be an interaction system with set K of components with
alphabets Ai , where i ∈ K . A ⊂ Aj is inevitable in Tj if every
infinite path in Tj encompasses an infinite number of transitions
labelled with some action in A. Let

G = (K ,→)

where

i → j ⇔ Aj\ excl (i) [j]
︸ ︷︷ ︸

is inevitable in Tj
︸︷︷︸

local condition
all aj that occur

in some α

in which i does
does not participate

If i → j then j will, when it proceeds, eventually need the
cooperation of i .
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A Sufficient Criterion for Liveness

Consider now a path in the graph G :

k → j1 → j2 → . . . jr .
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1. Observation: If jr participates infinitely often in a run σ then by
a simple induction argument k participates infinitely often in σ,
too.
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Consider now a path in the graph G :

k → j1 → j2 → . . . jr .

1. Observation: If jr participates infinitely often in a run σ then by
a simple induction argument k participates infinitely often in σ,
too.

2. Observation: If Sys is finite and deadlock-free then in any run σ

there must be some component j ′ that participates infinitely often
in σ. If there is a path from k to j ′ in G then k participates
infinitely often in that run σ.
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a simple induction argument k participates infinitely often in σ,
too.

2. Observation: If Sys is finite and deadlock-free then in any run σ

there must be some component j ′ that participates infinitely often
in σ. If there is a path from k to j ′ in G then k participates
infinitely often in that run σ.

Hence, as a first result: If Reach(k) = K , then k is live.
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A Sufficient Criterion for Liveness

Consider now a path in the graph G :

k → j1 → j2 → . . . jr .

1. Observation: If jr participates infinitely often in a run σ then by
a simple induction argument k participates infinitely often in σ,
too.

2. Observation: If Sys is finite and deadlock-free then in any run σ

there must be some component j ′ that participates infinitely often
in σ. If there is a path from k to j ′ in G then k participates
infinitely often in that run σ.

Hence, as a first result: If Reach(k) = K , then k is live.

But we can do better.
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A Sufficient Criterion for Liveness

Let k ∈ K

R0 (k) = {j | j reachable from k in G}
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Let k ∈ K

R0 (k) = {j | j reachable from k in G}

Ri+1 (k) = {h | ∀α ∈ C ∪ Comp : h (α) 6= ∅ ⇒

∃j ∈ Ri (k) : j (α) 6= ∅} ∪ Ri (k)
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Ri+1 (k) = {h | ∀α ∈ C ∪ Comp : h (α) 6= ∅ ⇒

∃j ∈ Ri (k) : j (α) 6= ∅} ∪ Ri (k)

⇒ R0 (k) ⊆ R1 (k) ⊆ R2 (k) ⊆ . . .
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Let k ∈ K

R0 (k) = {j | j reachable from k in G}

Ri+1 (k) = {h | ∀α ∈ C ∪ Comp : h (α) 6= ∅ ⇒

∃j ∈ Ri (k) : j (α) 6= ∅} ∪ Ri (k)

⇒ R0 (k) ⊆ R1 (k) ⊆ R2 (k) ⊆ . . .

Consider a run σ where h ∈ R1(k) occurs infinitely often. Then, as
the system is finite, there must be some α with which h occurs
infinitely often in that run. Hence there must be some component
j ∈ R0(k) with j(α) 6= ∅. Hence j participates infinitely often in σ.
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A Sufficient Criterion for Liveness

Let k ∈ K

R0 (k) = {j | j reachable from k in G}

Ri+1 (k) = {h | ∀α ∈ C ∪ Comp : h (α) 6= ∅ ⇒

∃j ∈ Ri (k) : j (α) 6= ∅} ∪ Ri (k)

⇒ R0 (k) ⊆ R1 (k) ⊆ R2 (k) ⊆ . . .

Consider a run σ where h ∈ R1(k) occurs infinitely often. Then, as
the system is finite, there must be some α with which h occurs
infinitely often in that run. Hence there must be some component
j ∈ R0(k) with j(α) 6= ∅. Hence j participates infinitely often in σ.

By induction on i we obtain
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A Sufficient Criterion for Liveness

Theorem
Let Sys be a finite P-deadlock-free interaction system and k ∈ K a

component. If

K =
⋃

i≥0

Ri (k)

then k is P-live in Sys.
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A Sufficient Criterion for Liveness

Theorem
Let Sys be a finite P-deadlock-free interaction system and k ∈ K a

component. If

K =
⋃

i≥0

Ri (k)

then k is P-live in Sys.

Cost: graph construction and “reachability” - polynomial in |Ti |,
|K |, and |C ∪ Comp|.
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Example - The Dining Philosophers (continued)

It can be shown that modelling the dining philosophers as above is
P-deadlock-free where P describes reachability from the
designated initial state. This is due to the control component.
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Example - The Dining Philosophers (continued)

It can be shown that modelling the dining philosophers as above is
P-deadlock-free where P describes reachability from the
designated initial state. This is due to the control component.

How can it be guaranteed that no philosopher starves?
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Example - The Dining Philosophers (continued)

It can be shown that modelling the dining philosophers as above is
P-deadlock-free where P describes reachability from the
designated initial state. This is due to the control component.

How can it be guaranteed that no philosopher starves?

It suffices to ensure that every philosopher is live because of the
linearity of the behavior of the philosophers.
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Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control
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Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

control is not in R0(pk).
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Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

control is not in R0(pk). The interactions in which control

participates are {enter , enterj}, {leave, leavej} j = 0, ..., n − 1.
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The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

control is not in R0(pk). The interactions in which control

participates are {enter , enterj}, {leave, leavej} j = 0, ..., n − 1. For
any such α there is a philosopher ∈ R0(pk) that participates in α.
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Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

control is not in R0(pk). The interactions in which control

participates are {enter , enterj}, {leave, leavej} j = 0, ..., n − 1. For
any such α there is a philosopher ∈ R0(pk) that participates in α.
Similarly for the forks.
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Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

control is not in R0(pk). The interactions in which control

participates are {enter , enterj}, {leave, leavej} j = 0, ..., n − 1. For
any such α there is a philosopher ∈ R0(pk) that participates in α.
Similarly for the forks.

⇒
⋃

i≥0

Ri (pk) = K

Hence philosopher pk is live in Sys.
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Conclusion

◮ We introduced a framework in which properties of component
based systems can be investigated. Testing of properties is
expensive.
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systems and can be tested in polynomial time.
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◮ local progress of K ′ ⊆ K
◮ robustness of deadlock-freedom in case of failure/removal of

components or ports

Mila Majster-Cederbaum A Framework for Component-Based Systems



Conclusion

◮ We introduced a framework in which properties of component
based systems can be investigated. Testing of properties is
expensive.

◮ We established a criterion that ensures liveness in interaction
systems and can be tested in polynomial time.

◮ Various other properties have been/are currently investigated:
◮ local/ global deadlock-freedom
◮ liveness of an interaction α or a subset K ′ ⊆ K of components
◮ local progress of K ′ ⊆ K
◮ robustness of deadlock-freedom in case of failure/removal of

components or ports
◮ availability of interactions
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preserved under composition
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Conclusion

Work in progress concerning compositionality

◮ Define an operator for composing interaction systems

◮ Establish conditions under which desirable properties are
preserved under composition

In addition we introduce probabilities to be able to make
statements of the type:

With probability p no deadlock will occur.
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