
A Framework for the Design and Verification of
Component-Based Systems

Mila Majster-Cederbaum

Institute of Computer Science, University of Mannheim, Germany

joint work with G. Gössler, S. Graf, M. Martens, and J. Sifakis

January 21, 2007

Mila Majster-Cederbaum A Framework for Component-Based Systems

System Views

Object-Oriented

call method A

O1

O2

Methods: A, B ,...

Interface

O1 depends on
the existence of O2

Mila Majster-Cederbaum A Framework for Component-Based Systems

System Views

Object-Oriented Component-Based

call method A

O1

“Glue Code”
O2

Methods: A, B ,...

Interface

Ports

Ports

O1 depends on Components do not refer to other
the existence of O2 components. They offer ports

and may be glued together.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Many approaches consider a component as a “black box”.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Many approaches consider a component as a “black box”.

If we want to study properties of component-based systems more
information is needed.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Our Model: Interaction Systems

Interaction Systems

Mila Majster-Cederbaum A Framework for Component-Based Systems

Our Model: Interaction Systems

Interaction Systems

◮ Each component is given by:

Mila Majster-Cederbaum A Framework for Component-Based Systems

Our Model: Interaction Systems

Interaction Systems

◮ Each component is given by: a “frame”

Mila Majster-Cederbaum A Framework for Component-Based Systems

Our Model: Interaction Systems

Interaction Systems

◮ Each component is given by: a “frame” + “local behavior”.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Our Model: Interaction Systems

Interaction Systems

◮ Each component is given by: a “frame” + “local behavior”.

◮ The glue is modelled via “connectors”.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Our Model: Interaction Systems

Interaction Systems

◮ Each component is given by: a “frame” + “local behavior”.

◮ The glue is modelled via “connectors”.

This means: there are three independent description levels.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Static ingredients of our Model

◮ a set K of components, w.l.o.g. K = {1, ..., n}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Static ingredients of our Model

◮ a set K of components, w.l.o.g. K = {1, ..., n}

◮ each component i ∈ K has a set Ai of ports (actions),
Ai ∩ Aj = ∅ for i 6= j

Mila Majster-Cederbaum A Framework for Component-Based Systems

Static ingredients of our Model

◮ a set K of components, w.l.o.g. K = {1, ..., n}

◮ each component i ∈ K has a set Ai of ports (actions),
Ai ∩ Aj = ∅ for i 6= j

◮ a connector c is a finite nonempty set of ports, where no two
ports belong to the same component, e.g. c = {a1, a2, a3},
ai ∈ Ai . A connector designates actions that should be
performed conjointly.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Static ingredients of our Model

◮ a set K of components, w.l.o.g. K = {1, ..., n}

◮ each component i ∈ K has a set Ai of ports (actions),
Ai ∩ Aj = ∅ for i 6= j

◮ a connector c is a finite nonempty set of ports, where no two
ports belong to the same component, e.g. c = {a1, a2, a3},
ai ∈ Ai . A connector designates actions that should be
performed conjointly.

◮ if ∅ 6= α ⊆ c , α is called an interaction. If ai ∈ Ai ∩ α, we say
that i participates in α and put i(α) = ai .

Mila Majster-Cederbaum A Framework for Component-Based Systems

Static ingredients of our Model

◮ a set K of components, w.l.o.g. K = {1, ..., n}

◮ each component i ∈ K has a set Ai of ports (actions),
Ai ∩ Aj = ∅ for i 6= j

◮ a connector c is a finite nonempty set of ports, where no two
ports belong to the same component, e.g. c = {a1, a2, a3},
ai ∈ Ai . A connector designates actions that should be
performed conjointly.

◮ if ∅ 6= α ⊆ c , α is called an interaction. If ai ∈ Ai ∩ α, we say
that i participates in α and put i(α) = ai .

◮ a connector set C = {c1, c2, . . .} such that
1) ci 6⊆ cj 2)

⋃

c∈C

c =
⋃

i∈K

Ai

Mila Majster-Cederbaum A Framework for Component-Based Systems

Static ingredients of our Model

◮ a set K of components, w.l.o.g. K = {1, ..., n}

◮ each component i ∈ K has a set Ai of ports (actions),
Ai ∩ Aj = ∅ for i 6= j

◮ a connector c is a finite nonempty set of ports, where no two
ports belong to the same component, e.g. c = {a1, a2, a3},
ai ∈ Ai . A connector designates actions that should be
performed conjointly.

◮ if ∅ 6= α ⊆ c , α is called an interaction. If ai ∈ Ai ∩ α, we say
that i participates in α and put i(α) = ai .

◮ a connector set C = {c1, c2, . . .} such that
1) ci 6⊆ cj 2)

⋃

c∈C

c =
⋃

i∈K

Ai

◮ connectors are also referred to as maximal interactions

Mila Majster-Cederbaum A Framework for Component-Based Systems

Static ingredients of our Model

◮ a set K of components, w.l.o.g. K = {1, ..., n}

◮ each component i ∈ K has a set Ai of ports (actions),
Ai ∩ Aj = ∅ for i 6= j

◮ a connector c is a finite nonempty set of ports, where no two
ports belong to the same component, e.g. c = {a1, a2, a3},
ai ∈ Ai . A connector designates actions that should be
performed conjointly.

◮ if ∅ 6= α ⊆ c , α is called an interaction. If ai ∈ Ai ∩ α, we say
that i participates in α and put i(α) = ai .

◮ a connector set C = {c1, c2, . . .} such that
1) ci 6⊆ cj 2)

⋃

c∈C

c =
⋃

i∈K

Ai

◮ connectors are also referred to as maximal interactions

◮ a set Comp of interactions α that are called complete. If
α ⊂ c is complete then α may proceed no matter if the
missing actions of c are available or not.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

We model the problem of n philosophers.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

We model the problem of n philosophers.
There are the following types of components:

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

We model the problem of n philosophers.
There are the following types of components:

◮ n components pi for 0 ≤ i ≤ n − 1 representing the
philosophers. The ports for pi are
{activatei , enteri , get

i
i , get

i+1
i , eati , put i

i , put i+1
i , leavei}.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

We model the problem of n philosophers.
There are the following types of components:

◮ n components pi for 0 ≤ i ≤ n − 1 representing the
philosophers. The ports for pi are
{activatei , enteri , get

i
i , get

i+1
i , eati , put i

i , put i+1
i , leavei}.

◮ n components fi for 0 ≤ i ≤ n − 1 representing the forks. The
ports for fi are {geti , puti}.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

We model the problem of n philosophers.
There are the following types of components:

◮ n components pi for 0 ≤ i ≤ n − 1 representing the
philosophers. The ports for pi are
{activatei , enteri , get

i
i , get

i+1
i , eati , put i

i , put i+1
i , leavei}.

◮ n components fi for 0 ≤ i ≤ n − 1 representing the forks. The
ports for fi are {geti , puti}.

◮ One component control . It controls when a philosopher may
enter the room in which the table is located. Its ports are
{enter , leave}.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Static View

Part of the picture : the philosophers, the control and some
connectors. Any nonempty subset of {eat0, eat1, ..., eatn−1} is
declared complete.

p0 pi pn−1

control

eat0 eati eatn−1

enter0
enteri entern−1

enter

{eat0, . . . , eatn−1}

{enter0, enter}

{enteri , enter}

{entern−1, enter}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Dynamics of our Model

◮ each component i has a local behavior given by a transition
system Ti = (Qi ,→i) where →i⊆ Qi × Ai × Qi and Ai is the
(local) port set of i . It is assumed that every state offers some
action.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Dynamics of our Model

◮ each component i has a local behavior given by a transition
system Ti = (Qi ,→i) where →i⊆ Qi × Ai × Qi and Ai is the
(local) port set of i . It is assumed that every state offers some
action.

◮ the behavior of the global system is then

T =



Q1 × Q2 × . . . Qn
︸ ︷︷ ︸

Q

,→





with
q = (q1, q2, . . .)

α
→ q′ =

(
q′
1, q

′
2, . . .

)

where α is an interaction and

Mila Majster-Cederbaum A Framework for Component-Based Systems

Dynamics of our Model

◮ each component i has a local behavior given by a transition
system Ti = (Qi ,→i) where →i⊆ Qi × Ai × Qi and Ai is the
(local) port set of i . It is assumed that every state offers some
action.

◮ the behavior of the global system is then

T =



Q1 × Q2 × . . . Qn
︸ ︷︷ ︸

Q

,→





with
q = (q1, q2, . . .)

α
→ q′ =

(
q′
1, q

′
2, . . .

)

where α is an interaction and
◮ qi = q′

i if component i does not participate in α

Mila Majster-Cederbaum A Framework for Component-Based Systems

Dynamics of our Model

◮ each component i has a local behavior given by a transition
system Ti = (Qi ,→i) where →i⊆ Qi × Ai × Qi and Ai is the
(local) port set of i . It is assumed that every state offers some
action.

◮ the behavior of the global system is then

T =



Q1 × Q2 × . . . Qn
︸ ︷︷ ︸

Q

,→





with
q = (q1, q2, . . .)

α
→ q′ =

(
q′
1, q

′
2, . . .

)

where α is an interaction and
◮ qi = q′

i if component i does not participate in α

◮ qi
ai→ q′

i if ai ∈ α

Mila Majster-Cederbaum A Framework for Component-Based Systems

Definition Interaction Systems

An Interaction System is given by

Sys = (K ,C ,Comp,T)

where

K , C , and Comp constitute the static part of the system

and

T constitutes the dynamic part of the system.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Dynamics

The behavior of philosopher pi is given by:

pi ,0 pi ,1

pi ,2

pi ,3

pi ,4pi ,5

pi ,6

pi ,7

activatei

enteri

get i
i

get i+1 mod n
i

eati

put i
i

put i+1 mod n
i

leavei

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Dynamics

The behavior of fork fi is given by:

fi ,0

fi ,1

getiputi

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Dynamics

The behavior of control is given by:

c0 c1 cn−1

enter

leave

enter

leave

enter

leave

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}

◮ {enter , enteri}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}

◮ {enter , enteri}

◮ {leave, leavei}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}

◮ {enter , enteri}

◮ {leave, leavei}

◮

{
get i

i , geti
}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}

◮ {enter , enteri}

◮ {leave, leavei}

◮

{
get i

i , geti
}

◮

{
put i

i , puti
}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}

◮ {enter , enteri}

◮ {leave, leavei}

◮

{
get i

i , geti
}

◮

{
put i

i , puti
}

◮

{

get i+1 mod n
i , geti+1 mod n

}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}

◮ {enter , enteri}

◮ {leave, leavei}

◮

{
get i

i , geti
}

◮

{
put i

i , puti
}

◮

{

get i+1 mod n
i , geti+1 mod n

}

◮

{

put i+1 mod n
i , puti+1 mod n

}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Connectors

There are the following connectors:

◮ {eat0, . . . , eatn−1} and any nonempty subset is complete

◮ {activate0, . . . , activaten−1}

◮ {enter , enteri}

◮ {leave, leavei}

◮

{
get i

i , geti
}

◮

{
put i

i , puti
}

◮

{

get i+1 mod n
i , geti+1 mod n

}

◮

{

put i+1 mod n
i , puti+1 mod n

}

for 0 ≤ i ≤ n − 1

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers, Global Transitions

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{activate0, activate1, activate2}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{enter1, enter}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{
get1

1 , get1
}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{enter2, enter}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{
get2

1 , get2
}

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers

The behavior for n = 3:

p0

a0

e0

g0
0

g1
0

eat0

p0
0

g1
0

l0

p1

a1

e1

g1
1

g2
1

eat1

p1
1

p2
1

l1

p2

a2

e2

g2
2

g0
2

eat2

p2
2

p0
2

l2

f0 f1 f2

p0 p1 p2g0 g1 g2

control

e e

ll

{eat1} and so on

Mila Majster-Cederbaum A Framework for Component-Based Systems

Properties

Properties of
Interaction Systems

Mila Majster-Cederbaum A Framework for Component-Based Systems

Properties

Properties of
Interaction Systems

Interesting properties of interaction systems are

Mila Majster-Cederbaum A Framework for Component-Based Systems

Properties

Properties of
Interaction Systems

Interesting properties of interaction systems are

◮ local/global deadlock-freedom

Mila Majster-Cederbaum A Framework for Component-Based Systems

Properties

Properties of
Interaction Systems

Interesting properties of interaction systems are

◮ local/global deadlock-freedom

◮ liveness of components

Mila Majster-Cederbaum A Framework for Component-Based Systems

Properties

Properties of
Interaction Systems

Interesting properties of interaction systems are

◮ local/global deadlock-freedom

◮ liveness of components

◮ progress of components

Mila Majster-Cederbaum A Framework for Component-Based Systems

Properties

Properties of
Interaction Systems

Interesting properties of interaction systems are

◮ local/global deadlock-freedom

◮ liveness of components

◮ progress of components

◮ robustness against failure of components

Mila Majster-Cederbaum A Framework for Component-Based Systems

Properties

Properties of
Interaction Systems

Interesting properties of interaction systems are

◮ local/global deadlock-freedom

◮ liveness of components

◮ progress of components

◮ robustness against failure of components

◮ availability

Mila Majster-Cederbaum A Framework for Component-Based Systems

Properties

Properties of
Interaction Systems

Interesting properties of interaction systems are

◮ local/global deadlock-freedom

◮ liveness of components

◮ progress of components

◮ robustness against failure of components

◮ availability

Here we treat liveness.

Mila Majster-Cederbaum A Framework for Component-Based Systems

P-Deadlock-Freedom

A predicate P on the state space Q is inductive if

1. P 6≡ false

2. P (q) ∧ q
α
→ q′ ⇒ P (q′) for α ∈ C ∪ Comp

Mila Majster-Cederbaum A Framework for Component-Based Systems

P-Deadlock-Freedom

A predicate P on the state space Q is inductive if

1. P 6≡ false

2. P (q) ∧ q
α
→ q′ ⇒ P (q′) for α ∈ C ∪ Comp

From now on let P be an inductive predicate on Q.

Mila Majster-Cederbaum A Framework for Component-Based Systems

P-Deadlock-Freedom

A predicate P on the state space Q is inductive if

1. P 6≡ false

2. P (q) ∧ q
α
→ q′ ⇒ P (q′) for α ∈ C ∪ Comp

From now on let P be an inductive predicate on Q.

Sys is called P-deadlock-free if for every global state q with
P (q) = true there is a transition

q
α
→ q′

with α ∈ C ∪ Comp.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Liveness

Let Sys = (K ,C ,Comp,T) be a P-deadlock-free interaction
system.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Liveness

Let Sys = (K ,C ,Comp,T) be a P-deadlock-free interaction
system.
A run is an infinite transition sequence

σ := q0
α0→ q1

α1→ q2
α2→ . . . αi ∈ C ∪ Comp.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Liveness

Let Sys = (K ,C ,Comp,T) be a P-deadlock-free interaction
system.
A run is an infinite transition sequence

σ := q0
α0→ q1

α1→ q2
α2→ . . . αi ∈ C ∪ Comp.

K ′ ⊆ K is called is called P-live if every run with P(q0)

σ := q0
α0→ q1

α1→ q2
α2→ . . . αi ∈ C ∪ Comp

of Sys encompasses an infinite number of transitions labelled with
an interaction where some i ∈ K ′ participates.

Mila Majster-Cederbaum A Framework for Component-Based Systems

NP-Hardness

Testing properties is expensive (“state-space-explosion”).

Mila Majster-Cederbaum A Framework for Component-Based Systems

NP-Hardness

Testing properties is expensive (“state-space-explosion”).

We have shown e.g. that deciding

Mila Majster-Cederbaum A Framework for Component-Based Systems

NP-Hardness

Testing properties is expensive (“state-space-explosion”).

We have shown e.g. that deciding

◮ deadlock-freedom

Mila Majster-Cederbaum A Framework for Component-Based Systems

NP-Hardness

Testing properties is expensive (“state-space-explosion”).

We have shown e.g. that deciding

◮ deadlock-freedom

◮ liveness

Mila Majster-Cederbaum A Framework for Component-Based Systems

NP-Hardness

Testing properties is expensive (“state-space-explosion”).

We have shown e.g. that deciding

◮ deadlock-freedom

◮ liveness

is NP-hard.

Mila Majster-Cederbaum A Framework for Component-Based Systems

NP-Hardness

Testing properties is expensive (“state-space-explosion”).

We have shown e.g. that deciding

◮ deadlock-freedom

◮ liveness

is NP-hard.

Proposed solutions:

Mila Majster-Cederbaum A Framework for Component-Based Systems

NP-Hardness

Testing properties is expensive (“state-space-explosion”).

We have shown e.g. that deciding

◮ deadlock-freedom

◮ liveness

is NP-hard.

Proposed solutions:

◮ establish conditions that can be tested in polynomial time and
imply the desired properties

Mila Majster-Cederbaum A Framework for Component-Based Systems

NP-Hardness

Testing properties is expensive (“state-space-explosion”).

We have shown e.g. that deciding

◮ deadlock-freedom

◮ liveness

is NP-hard.

Proposed solutions:

◮ establish conditions that can be tested in polynomial time and
imply the desired properties

◮ exploit compositionality

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Let Sys be an interaction system with set K of components with
alphabets Ai , where i ∈ K .

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Let Sys be an interaction system with set K of components with
alphabets Ai , where i ∈ K . A ⊂ Aj is inevitable in Tj if every
infinite path in Tj encompasses an infinite number of transitions
labelled with some action in A.

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Let Sys be an interaction system with set K of components with
alphabets Ai , where i ∈ K . A ⊂ Aj is inevitable in Tj if every
infinite path in Tj encompasses an infinite number of transitions
labelled with some action in A. Let

G = (K ,→)

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Let Sys be an interaction system with set K of components with
alphabets Ai , where i ∈ K . A ⊂ Aj is inevitable in Tj if every
infinite path in Tj encompasses an infinite number of transitions
labelled with some action in A. Let

G = (K ,→)

where

i → j ⇔ Aj\ excl (i) [j]
︸ ︷︷ ︸

is inevitable in Tj
︸︷︷︸

local condition
all aj that occur

in some α

in which i does
does not participate

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Let Sys be an interaction system with set K of components with
alphabets Ai , where i ∈ K . A ⊂ Aj is inevitable in Tj if every
infinite path in Tj encompasses an infinite number of transitions
labelled with some action in A. Let

G = (K ,→)

where

i → j ⇔ Aj\ excl (i) [j]
︸ ︷︷ ︸

is inevitable in Tj
︸︷︷︸

local condition
all aj that occur

in some α

in which i does
does not participate

If i → j then j will, when it proceeds, eventually need the
cooperation of i .

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Consider now a path in the graph G :

k → j1 → j2 → . . . jr .

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Consider now a path in the graph G :

k → j1 → j2 → . . . jr .

1. Observation: If jr participates infinitely often in a run σ then by
a simple induction argument k participates infinitely often in σ,
too.

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Consider now a path in the graph G :

k → j1 → j2 → . . . jr .

1. Observation: If jr participates infinitely often in a run σ then by
a simple induction argument k participates infinitely often in σ,
too.

2. Observation: If Sys is finite and deadlock-free then in any run σ

there must be some component j ′ that participates infinitely often
in σ. If there is a path from k to j ′ in G then k participates
infinitely often in that run σ.

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Consider now a path in the graph G :

k → j1 → j2 → . . . jr .

1. Observation: If jr participates infinitely often in a run σ then by
a simple induction argument k participates infinitely often in σ,
too.

2. Observation: If Sys is finite and deadlock-free then in any run σ

there must be some component j ′ that participates infinitely often
in σ. If there is a path from k to j ′ in G then k participates
infinitely often in that run σ.

Hence, as a first result: If Reach(k) = K , then k is live.

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Consider now a path in the graph G :

k → j1 → j2 → . . . jr .

1. Observation: If jr participates infinitely often in a run σ then by
a simple induction argument k participates infinitely often in σ,
too.

2. Observation: If Sys is finite and deadlock-free then in any run σ

there must be some component j ′ that participates infinitely often
in σ. If there is a path from k to j ′ in G then k participates
infinitely often in that run σ.

Hence, as a first result: If Reach(k) = K , then k is live.

But we can do better.

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Let k ∈ K

R0 (k) = {j | j reachable from k in G}

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Let k ∈ K

R0 (k) = {j | j reachable from k in G}

Ri+1 (k) = {h | ∀α ∈ C ∪ Comp : h (α) 6= ∅ ⇒

∃j ∈ Ri (k) : j (α) 6= ∅} ∪ Ri (k)

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Let k ∈ K

R0 (k) = {j | j reachable from k in G}

Ri+1 (k) = {h | ∀α ∈ C ∪ Comp : h (α) 6= ∅ ⇒

∃j ∈ Ri (k) : j (α) 6= ∅} ∪ Ri (k)

⇒ R0 (k) ⊆ R1 (k) ⊆ R2 (k) ⊆ . . .

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Let k ∈ K

R0 (k) = {j | j reachable from k in G}

Ri+1 (k) = {h | ∀α ∈ C ∪ Comp : h (α) 6= ∅ ⇒

∃j ∈ Ri (k) : j (α) 6= ∅} ∪ Ri (k)

⇒ R0 (k) ⊆ R1 (k) ⊆ R2 (k) ⊆ . . .

Consider a run σ where h ∈ R1(k) occurs infinitely often. Then, as
the system is finite, there must be some α with which h occurs
infinitely often in that run. Hence there must be some component
j ∈ R0(k) with j(α) 6= ∅. Hence j participates infinitely often in σ.

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Let k ∈ K

R0 (k) = {j | j reachable from k in G}

Ri+1 (k) = {h | ∀α ∈ C ∪ Comp : h (α) 6= ∅ ⇒

∃j ∈ Ri (k) : j (α) 6= ∅} ∪ Ri (k)

⇒ R0 (k) ⊆ R1 (k) ⊆ R2 (k) ⊆ . . .

Consider a run σ where h ∈ R1(k) occurs infinitely often. Then, as
the system is finite, there must be some α with which h occurs
infinitely often in that run. Hence there must be some component
j ∈ R0(k) with j(α) 6= ∅. Hence j participates infinitely often in σ.

By induction on i we obtain

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Theorem
Let Sys be a finite P-deadlock-free interaction system and k ∈ K a

component. If

K =
⋃

i≥0

Ri (k)

then k is P-live in Sys.

Mila Majster-Cederbaum A Framework for Component-Based Systems

A Sufficient Criterion for Liveness

Theorem
Let Sys be a finite P-deadlock-free interaction system and k ∈ K a

component. If

K =
⋃

i≥0

Ri (k)

then k is P-live in Sys.

Cost: graph construction and “reachability” - polynomial in |Ti |,
|K |, and |C ∪ Comp|.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers (continued)

It can be shown that modelling the dining philosophers as above is
P-deadlock-free where P describes reachability from the
designated initial state. This is due to the control component.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers (continued)

It can be shown that modelling the dining philosophers as above is
P-deadlock-free where P describes reachability from the
designated initial state. This is due to the control component.

How can it be guaranteed that no philosopher starves?

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers (continued)

It can be shown that modelling the dining philosophers as above is
P-deadlock-free where P describes reachability from the
designated initial state. This is due to the control component.

How can it be guaranteed that no philosopher starves?

It suffices to ensure that every philosopher is live because of the
linearity of the behavior of the philosophers.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

control is not in R0(pk).

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

control is not in R0(pk). The interactions in which control

participates are {enter , enterj}, {leave, leavej} j = 0, ..., n − 1.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

control is not in R0(pk). The interactions in which control

participates are {enter , enterj}, {leave, leavej} j = 0, ..., n − 1. For
any such α there is a philosopher ∈ R0(pk) that participates in α.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

control is not in R0(pk). The interactions in which control

participates are {enter , enterj}, {leave, leavej} j = 0, ..., n − 1. For
any such α there is a philosopher ∈ R0(pk) that participates in α.
Similarly for the forks.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Example - The Dining Philosophers(continued)

The theorem can be used to show that every philosopher is live.
Part of G :

pk pl

fk f(k+1) mod n

control

control is not in R0(pk). The interactions in which control

participates are {enter , enterj}, {leave, leavej} j = 0, ..., n − 1. For
any such α there is a philosopher ∈ R0(pk) that participates in α.
Similarly for the forks.

⇒
⋃

i≥0

Ri (pk) = K

Hence philosopher pk is live in Sys.
Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

◮ We introduced a framework in which properties of component
based systems can be investigated. Testing of properties is
expensive.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

◮ We introduced a framework in which properties of component
based systems can be investigated. Testing of properties is
expensive.

◮ We established a criterion that ensures liveness in interaction
systems and can be tested in polynomial time.

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

◮ We introduced a framework in which properties of component
based systems can be investigated. Testing of properties is
expensive.

◮ We established a criterion that ensures liveness in interaction
systems and can be tested in polynomial time.

◮ Various other properties have been/are currently investigated:

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

◮ We introduced a framework in which properties of component
based systems can be investigated. Testing of properties is
expensive.

◮ We established a criterion that ensures liveness in interaction
systems and can be tested in polynomial time.

◮ Various other properties have been/are currently investigated:
◮ local/ global deadlock-freedom

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

◮ We introduced a framework in which properties of component
based systems can be investigated. Testing of properties is
expensive.

◮ We established a criterion that ensures liveness in interaction
systems and can be tested in polynomial time.

◮ Various other properties have been/are currently investigated:
◮ local/ global deadlock-freedom
◮ liveness of an interaction α or a subset K ′ ⊆ K of components

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

◮ We introduced a framework in which properties of component
based systems can be investigated. Testing of properties is
expensive.

◮ We established a criterion that ensures liveness in interaction
systems and can be tested in polynomial time.

◮ Various other properties have been/are currently investigated:
◮ local/ global deadlock-freedom
◮ liveness of an interaction α or a subset K ′ ⊆ K of components
◮ local progress of K ′ ⊆ K

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

◮ We introduced a framework in which properties of component
based systems can be investigated. Testing of properties is
expensive.

◮ We established a criterion that ensures liveness in interaction
systems and can be tested in polynomial time.

◮ Various other properties have been/are currently investigated:
◮ local/ global deadlock-freedom
◮ liveness of an interaction α or a subset K ′ ⊆ K of components
◮ local progress of K ′ ⊆ K
◮ robustness of deadlock-freedom in case of failure/removal of

components or ports

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

◮ We introduced a framework in which properties of component
based systems can be investigated. Testing of properties is
expensive.

◮ We established a criterion that ensures liveness in interaction
systems and can be tested in polynomial time.

◮ Various other properties have been/are currently investigated:
◮ local/ global deadlock-freedom
◮ liveness of an interaction α or a subset K ′ ⊆ K of components
◮ local progress of K ′ ⊆ K
◮ robustness of deadlock-freedom in case of failure/removal of

components or ports
◮ availability of interactions

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

Work in progress concerning compositionality

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

Work in progress concerning compositionality

◮ Define an operator for composing interaction systems

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

Work in progress concerning compositionality

◮ Define an operator for composing interaction systems

◮ Establish conditions under which desirable properties are
preserved under composition

Mila Majster-Cederbaum A Framework for Component-Based Systems

Conclusion

Work in progress concerning compositionality

◮ Define an operator for composing interaction systems

◮ Establish conditions under which desirable properties are
preserved under composition

In addition we introduce probabilities to be able to make
statements of the type:

With probability p no deadlock will occur.

Mila Majster-Cederbaum A Framework for Component-Based Systems

