Maximum Rigid Components as Means for Direction-based Sensor Network Localization

Bastian Katz, Marco Gaertler, and Dorothea Wagner

Universität Karlsruhe (TH) Forschungsuniversität · gegründet 1825

33rd Int. Conference on Current Trends in Theory and Practice of Computer Science, Harachov, January 22, 2007

ness Gre

edy Techniques

Body-Joint Framework

Layout

Results & Conclusion

Sensor Network Localization

ess Gree

edy Techniques

Body-Joint Frameworl

neworks L

Results & Conclusion

Sensor Network Localization

 \gg what is it? (reconstruction)

Results & Conclusion

Possible Inputs of Localization Problems

- Distances, e.g. from signal strength \gg
 - >> uses common hardware capability
 - \gg realization problem is \mathcal{NP} -hard
- Directions, e.g. from antenna arrays
 - \gg needs special hardware
 - \gg realization problem is in \mathcal{P}
- Radio model, e.g. (quasi-)unit-disk-graph
 - relies on assumptions on radio propagation
 - $\gg \mathcal{NP}$ -hard even in combination with distances or directions

Possible Inputs of Localization Problems

Directions, e.g. from antenna arrays

- \gg needs special hardware
- \gg realization problem is in \mathcal{P}

- >> We take a closer look on the algorithmics of the direction-based localization problem

Localization Agenda

Localization Agenda

Given the communication graph with edge directions,

- >> What parts of the network can uniquely be reconstructed?
- \gg What is an efficient way to identify these parts?
 - \gg Can we take advantage of the sparsity and/or high locality?
 - \gg To what extent can we use distributed techniques?
- \gg How can we get the layout then?

Uniqueness

- Possible up to scaling/rotation \gg
- >> Known problem in *rigidity theory*
 - >> uniqueness coincides with (parallel) rigidity
 - ≫ we are looking for maximum rigid components

Parallel Rigidity [Laman 70 / Whiteley 96]

A graph G = (V, E) is (parallelly) rigid in the plane iff it contains edges $E' \subseteq E$ with |E'| = 2|V| - 3 such that for all $E'' \subset E'$

 $|E''| \leq 2|V(E'')| - 3$

Uniqueness

- Possible up to scaling/rotation \gg
- >> Known problem in *rigidity theory*
 - >> uniqueness coincides with (parallel) rigidity
 - ≫ we are looking for maximum rigid components

Parallel Rigidity [Laman 70 / Whiteley 96]

A graph G = (V, E) is (parallelly) rigid in the plane iff it contains edges $E' \subseteq E$ with |E'| = 2|V| - 3 such that for all $E'' \subset E'$

 $|E''| \leq 2|V(E'')| - 3$

- Uniqueness
- Possible up to scaling/rotation \gg
- >> Known problem in *rigidity theory*
 - >> uniqueness coincides with (parallel) rigidity
 - ≫ we are looking for maximum rigid components

Parallel Rigidity [Laman 70 / Whiteley 96]

A graph G = (V, E) is (parallelly) rigid in the plane iff it contains edges $E' \subseteq E$ with |E'| = 2|V| - 3 such that for all $E'' \subset E'$

 $|E''| \leq 2|V(E'')| - 3$

- Uniqueness
- Possible up to scaling/rotation \gg
- >> Known problem in *rigidity theory*
 - >> uniqueness coincides with (parallel) rigidity
 - ≫ we are looking for maximum rigid components

Parallel Rigidity [Laman 70 / Whiteley 96]

A graph G = (V, E) is (parallelly) rigid in the plane iff it contains edges $E' \subseteq E$ with |E'| = 2|V| - 3 such that for all $E'' \subset E'$

 $|E''| \leq 2|V(E'')| - 3$

Uniqueness

- Possible up to scaling/rotation \gg
- >> Known problem in *rigidity theory*
 - >> uniqueness coincides with (parallel) rigidity
 - ≫ we are looking for maximum rigid components

Parallel Rigidity [Laman 70 / Whiteley 96]

A graph G = (V, E) is (parallelly) rigid in the plane iff it contains edges $E' \subseteq E$ with |E'| = 2|V| - 3 such that for all $E'' \subset E'$

 $|E''| \leq 2|V(E'')| - 3$

Results & Conclusion

Rigid Components

- Known test for rigidity: *pebble game* \gg
 - could be adapted to identify rigid \gg components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$

Results & Conclusion

Rigid Components

- Known test for rigidity: *pebble game* \gg
 - could be adapted to identify rigid \gg components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- \gg More intuitive techniques for graphs with high locality:

Results & Conclusion

Rigid Components

- Known test for rigidity: *pebble game* \gg
 - could be adapted to identify rigid \gg components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- More intuitive techniques for graphs \gg with high locality:
 - \gg edges (trivial)

Results & Conclusion

Rigid Components

- Known test for rigidity: *pebble game* \gg
 - could be adapted to identify rigid \gg components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- More intuitive techniques for graphs \gg with high locality:
 - \gg edges (trivial)

Results & Conclusion

Rigid Components

- Known test for rigidity: pebble game
 - could be adapted to identify rigid \gg components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- More intuitive techniques for graphs \gg with high locality:
 - ≫ edges (trivial)
 - \gg triangulation

Results & Conclusion

Rigid Components

- Known test for rigidity: *pebble game* \gg
 - could be adapted to identify rigid \gg components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- More intuitive techniques for graphs \gg with high locality:
 - ≫ edges (trivial)
 - triangulation

Results & Conclusion

Rigid Components

- Known test for rigidity: *pebble game* \gg
 - could be adapted to identify rigid \gg components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- More intuitive techniques for graphs \gg with high locality:
 - ≫ edges (trivial)
 - triangulation
 - edge-overlapping

Results & Conclusion

Rigid Components

- Known test for rigidity: pebble game
 - could be adapted to identify rigid \gg components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- More intuitive techniques for graphs \gg with high locality:
 - ≫ edges (trivial)
 - triangulation
 - edge-overlapping

Results & Conclusion

Rigid Components

- Known test for rigidity: pebble game
 - could be adapted to identify rigid \gg components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- \gg More intuitive techniques for graphs with high locality:
 - ≫ edges (trivial)
 - triangulation \gg
 - \gg edge-overlapping
 - node-overlapping \gg

ss Greedy

Greedy Techniques

Body-Joint Framework

eworks Lay

Results & Conclusion

Rigid Components

- \gg Known test for rigidity: *pebble game*
 - could be adapted to identify rigid components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- More intuitive techniques for graphs with high locality:
 - \gg edges (trivial)
 - \gg triangulation
 - \gg edge-overlapping
 - \gg node-overlapping
 - \gg all combinations

DFG Research Training Group 1194

Self-organizing Sensor-Actuator-Networks

- \gg faster, easier to distribute, but. . .
- they do not end with *maximum* rigid components.

ss Greedy

Greedy Techniques

Body-Joint Framework

meworks L

Results & Conclusion

Rigid Components

- \gg Known test for rigidity: *pebble game*
 - could be adapted to identify rigid components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- More intuitive techniques for graphs with high locality:
 - \gg edges (trivial)
 - \gg triangulation
 - \gg edge-overlapping
 - \gg node-overlapping
 - \gg all combinations

DFG Research Training Group 1194

Self-organizing Sensor-Actuator-Networks

- \gg faster, easier to distribute, but...
- \gg

they do not end with maximum rigid

components.

ess Greedy

Greedy Techniques

ody-Joint Frameworks

Results & Conclusion

Rigid Components

- \gg Known test for rigidity: *pebble game*
 - could be adapted to identify rigid components
 - \gg hard to distribute, runtime in $\mathcal{O}(n^2)$
- More intuitive techniques for graphs with high locality:
 - \gg edges (trivial)
 - \gg triangulation
 - \gg edge-overlapping
 - \gg node-overlapping
 - \gg all combinations

DFG Research Training Group 1194

Self-organizing Sensor-Actuator-Networks

- \gg faster, easier to distribute, but...
- they do not end with *maximum* rigid components.

Stuck?

- Is the price of being greedy to end here?
- Can we find maximum rigid components in such *body-joint frameworks*?
 - previous work [Moukarzel 96] solves only special cases

ss Greedy

/ Techniques

Results & Conclusion

Rigidity in Body-Joint Frameworks

 \gg Intuition in graphs:

A *minimal* subgraph with enough edges is rigid.

Intuition with bodies and joints: A minimal set of bodies using enough nodes redundantly is rigid.

 \gg Node redundancy wrt. a set of bodies $\mathcal S$:

$$\operatorname{rd}_{\mathcal{S}}(v) := \sharp \{ S \in \mathcal{S} \mid v \in \mathcal{S} \} - 1$$

$$\gg$$
 Example: $\mathrm{rd}_{v}(\mathcal{S})=1$, $\mathrm{rd}_{u}(\mathcal{S})=2$

Rigidity in body-joint frameworks cont'd

Theorem [Our paper]

Let ${\mathcal S}$ be a set of bodies. If ${\mathcal S}$ is minimal with

$$2\sum_{v\in V} \operatorname{rd}_{\mathcal{S}}(v) \ge 3(|\mathcal{S}|-1)$$
,

the bodies from \mathcal{S} together are rigid.

» Example:

$$2\sum \operatorname{rd}_{\mathcal{S}}(v) = 18 = 3(|\mathcal{S}| - 1)$$

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

Algorithm

Iteratively grow a set of maximally rigid bodies!

- \gg repeatedly add a body to a set \mathcal{S}^{\star}
- \gg check if \mathcal{S}^{\star} contains a rigid subset
- merge rigid subsets as soon as \gg possible

 \gg How can we efficiently test for rigid subsets?

ess Gree

edy Techniques

Results & Conclusion

Bipartite Rigidity Flow Network

- \gg Maintain a flow network:
 - \gg nodes are bodies and joints
 - \gg arcs are inclusions
 - \gg support is twice the redundancy
 - \gg demand and capacities 3 resp. 2
- ➢ Flow network is updated after adding a body to S^{*}

 \gg maximum flows reveal rigid sets

- Candidates are *closures* over each neighbored body in the residual graph
- > Flows can be reused, bounding the time to $O(n + l \log l + k^2)$ for k bodies and l joints (overall)

ess Gree

edy Techniques

Results & Conclusion

Bipartite Rigidity Flow Network

- \gg Maintain a flow network:
 - \gg nodes are bodies and joints
 - \gg arcs are inclusions
 - \gg support is twice the redundancy
 - \gg demand and capacities 3 resp. 2
- \gg Flow network is updated after adding a body to \mathcal{S}^{\star}

 \gg maximum flows reveal rigid sets

- Candidates are *closures* over each neighbored body in the residual graph
- > Flows can be reused, bounding the time to $O(n + l \log l + k^2)$ for k bodies and l joints (overall)

less Greed

edy Techniques

Results & Conclusion

Bipartite Rigidity Flow Network

- \gg Maintain a flow network:
 - \gg nodes are bodies and joints
 - \gg arcs are inclusions
 - \gg support is twice the redundancy
 - \gg demand and capacities 3 resp. 2
- \gg Flow network is updated after adding a body to \mathcal{S}^{\star}

 \gg maximum flows reveal rigid sets

- Candidates are *closures* over each neighbored body in the residual graph
- >> Flows can be reused, bounding the time to $O(n + l \log l + k^2)$ for k bodies and l joints (overall)

iess Gree

edy Techniques

Results & Conclusion

Bipartite Rigidity Flow Network

- \gg Maintain a flow network:
 - \gg nodes are bodies and joints
 - \gg arcs are inclusions
 - \gg support is twice the redundancy
 - \gg demand and capacities 3 resp. 2
- \gg Flow network is updated after adding a body to \mathcal{S}^{\star}

 \gg maximum flows reveal rigid sets

- Candidates are *closures* over each neighbored body in the residual graph
- >> Flows can be reused, bounding the time to $O(n + l \log l + k^2)$ for k bodies and l joints (overall)

ess Greed

edy Techniques

Layout Re

Results & Conclusion

Bipartite Rigidity Flow Network

- \gg Maintain a flow network:
 - \gg nodes are bodies and joints
 - \gg arcs are inclusions
 - \gg support is twice the redundancy
 - \gg demand and capacities 3 resp. 2
- \gg Flow network is updated after adding a body to \mathcal{S}^{\star}

 \gg maximum flows reveal rigid sets

- Candidates are *closures* over each neighbored body in the residual graph
- >> Flows can be reused, bounding the time to $\mathcal{O}(n + l \log l + k^2)$ for k bodies and l joints (overall)

Introduction	Uniqueness	Greedy Techniques	Body-Joint Frameworks	Layout	Results & Conclusion
Lay	out				

- \gg Finding a consistent realization can be formulated as an LP
- For rigid subgraphs, solving a system of linear equations suffices
- Solving independend subproblems first reduces costs dramatically

 \gg \Rightarrow always keep a realization for all rigid bodies!

Experimental Results on Geometric Graphs

node density (nodes per unit square)

- >> Maximum rigid components demand less density.
- \gg Greedy techniques really reduce the number of bodies.
- \gg Layout subproblems almost always have constant size.
 - \gg costs of layout become negligible

 $\gg\,$ Direction-based localization is the only case with

- \gg tight characterization of uniqueness
- \gg polynomial-time realization
- ≫ Our approach
 - solves the problem of finding rigid components in body-joint frameworks
 - \gg allows to use fast & intuitive techniques first
 - \gg is adapted to geometric graphs (at asymptotically no cost)
 - removes the bottleneck by iteratively solving the layout problem

Thank you for your attention.