
On the (high) undecidability of distributed program synthesis

On the (high) undecidability of distributed
program synthesis

David Janin

LaBRI, Université de Bordeaux I

January 21, 2007



On the (high) undecidability of distributed program synthesis

Overview of the talk

Outlines

Games and program synthesis
Program synthesis through games
The centralized programming case
The distributed programming case

Expressiveness of distributed games
A model of computation : domino games
Dominos and distributed games
Within the arithmetical hierarchy
Above the arithmetical hierarchy

Conclusion



On the (high) undecidability of distributed program synthesis

Overview of the talk

Outlines

Games and program synthesis
Program synthesis through games
The centralized programming case
The distributed programming case

Expressiveness of distributed games
A model of computation : domino games
Dominos and distributed games
Within the arithmetical hierarchy
Above the arithmetical hierarchy

Conclusion



On the (high) undecidability of distributed program synthesis

Overview of the talk

Outlines

Games and program synthesis
Program synthesis through games
The centralized programming case
The distributed programming case

Expressiveness of distributed games
A model of computation : domino games
Dominos and distributed games
Within the arithmetical hierarchy
Above the arithmetical hierarchy

Conclusion



On the (high) undecidability of distributed program synthesis

Games and program synthesis

Program synthesis through games

Designing (correct) programs with games

Designing correct programs
Goal: Given a program spec. S , design a program P s.t. P |= S .

The game reduction
Compute a game GS and a mapping P !→ σP that maps (correct)
programs P onto (winning) strategies σP . Then, designing a
(correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?
Up to (arbitrary !) game reductions programs are (winning)
strategies. The game approach is thus fairly universal.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

Program synthesis through games

Designing (correct) programs with games

Designing correct programs
Goal: Given a program spec. S , design a program P s.t. P |= S .

The game reduction
Compute a game GS and a mapping P !→ σP that maps (correct)
programs P onto (winning) strategies σP . Then, designing a
(correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?
Up to (arbitrary !) game reductions programs are (winning)
strategies. The game approach is thus fairly universal.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

Program synthesis through games

Designing (correct) programs with games

Designing correct programs
Goal: Given a program spec. S , design a program P s.t. P |= S .

The game reduction
Compute a game GS and a mapping P !→ σP that maps (correct)
programs P onto (winning) strategies σP . Then, designing a
(correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?
Up to (arbitrary !) game reductions programs are (winning)
strategies. The game approach is thus fairly universal.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

Program synthesis through games

Designing (correct) programs with games

Designing correct programs
Goal: Given a program spec. S , design a program P s.t. P |= S .

The game reduction
Compute a game GS and a mapping P !→ σP that maps (correct)
programs P onto (winning) strategies σP . Then, designing a
(correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?
Up to (arbitrary !) game reductions programs are (winning)
strategies. The game approach is thus fairly universal.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

Program synthesis through games

Designing (correct) programs with games

Designing correct programs
Goal: Given a program spec. S , design a program P s.t. P |= S .

The game reduction
Compute a game GS and a mapping P !→ σP that maps (correct)
programs P onto (winning) strategies σP . Then, designing a
(correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?
Up to (arbitrary !) game reductions programs are (winning)
strategies. The game approach is thus fairly universal.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

The Two Player Game Setting

A one against one game

! the Process player (Smiley),

! the Environment player (Fred).



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

The Two Player Game Setting

A one against one game

! the Process player (Smiley),

! the Environment player (Fred).



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

The Two Player Game Setting

A one against one game

! the Process player (Smiley),

! the Environment player (Fred).



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Two players games definition

A game G = 〈〉

! Questions Q (Env. pos.) and Answers A
(Proc. pos.) with an initial fact a0 ∈ A,

! Game Rules : RP ⊆ A×Q and RE ⊆ Q ×A,

! Env. Strategy τ : Q∗ → A (with τE (ε) = a0)
and Process’s strategy σ : A∗ → Q

! Induced (maximal) play :
σ ∗ τ ∈ (A.Q)∗.A + (A.Q)+ + (A.Q)ω

! Process wins when:
either σ ∗ τ ∈ (A.Q)+ (finite case)
or σ ∗ τ ∈ W ⊆ (A.Q)ω (infinite case)
W is the infinitary winning condition.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Two players games definition

A game G = 〈Q, A〉

! Questions Q (Env. pos.) and Answers A
(Proc. pos.) with an initial fact a0 ∈ A,

! Game Rules : RP ⊆ A×Q and RE ⊆ Q ×A,

! Env. Strategy τ : Q∗ → A (with τE (ε) = a0)
and Process’s strategy σ : A∗ → Q

! Induced (maximal) play :
σ ∗ τ ∈ (A.Q)∗.A + (A.Q)+ + (A.Q)ω

! Process wins when:
either σ ∗ τ ∈ (A.Q)+ (finite case)
or σ ∗ τ ∈ W ⊆ (A.Q)ω (infinite case)
W is the infinitary winning condition.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Two players games definition

A game G = 〈Q, A, a0〉

! Questions Q (Env. pos.) and Answers A
(Proc. pos.) with an initial fact a0 ∈ A,

! Game Rules : RP ⊆ A×Q and RE ⊆ Q ×A,

! Env. Strategy τ : Q∗ → A (with τE (ε) = a0)
and Process’s strategy σ : A∗ → Q

! Induced (maximal) play :
σ ∗ τ ∈ (A.Q)∗.A + (A.Q)+ + (A.Q)ω

! Process wins when:
either σ ∗ τ ∈ (A.Q)+ (finite case)
or σ ∗ τ ∈ W ⊆ (A.Q)ω (infinite case)
W is the infinitary winning condition.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Two players games definition

A game G = 〈Q, A, a0, RP , RE 〉

! Questions Q (Env. pos.) and Answers A
(Proc. pos.) with an initial fact a0 ∈ A,

! Game Rules : RP ⊆ A×Q and RE ⊆ Q ×A,

! Env. Strategy τ : Q∗ → A (with τE (ε) = a0)
and Process’s strategy σ : A∗ → Q

! Induced (maximal) play :
σ ∗ τ ∈ (A.Q)∗.A + (A.Q)+ + (A.Q)ω

! Process wins when:
either σ ∗ τ ∈ (A.Q)+ (finite case)
or σ ∗ τ ∈ W ⊆ (A.Q)ω (infinite case)
W is the infinitary winning condition.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Two players games definition

A game G = 〈Q, A, a0, RP , RE 〉

! Questions Q (Env. pos.) and Answers A
(Proc. pos.) with an initial fact a0 ∈ A,

! Game Rules : RP ⊆ A×Q and RE ⊆ Q ×A,

! Env. Strategy τ : Q∗ → A (with τE (ε) = a0)
and Process’s strategy σ : A∗ → Q

! Induced (maximal) play :
σ ∗ τ ∈ (A.Q)∗.A + (A.Q)+ + (A.Q)ω

! Process wins when:
either σ ∗ τ ∈ (A.Q)+ (finite case)
or σ ∗ τ ∈ W ⊆ (A.Q)ω (infinite case)
W is the infinitary winning condition.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Two players games definition

A game G = 〈Q, A, a0, RP , RE 〉

! Questions Q (Env. pos.) and Answers A
(Proc. pos.) with an initial fact a0 ∈ A,

! Game Rules : RP ⊆ A×Q and RE ⊆ Q ×A,

! Env. Strategy τ : Q∗ → A (with τE (ε) = a0)
and Process’s strategy σ : A∗ → Q

! Induced (maximal) play :
σ ∗ τ ∈ (A.Q)∗.A + (A.Q)+ + (A.Q)ω

! Process wins when:
either σ ∗ τ ∈ (A.Q)+ (finite case)
or σ ∗ τ ∈ W ⊆ (A.Q)ω (infinite case)
W is the infinitary winning condition.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Two players games definition

A game G = 〈Q, A, a0, RP , RE , W 〉

! Questions Q (Env. pos.) and Answers A
(Proc. pos.) with an initial fact a0 ∈ A,

! Game Rules : RP ⊆ A×Q and RE ⊆ Q ×A,

! Env. Strategy τ : Q∗ → A (with τE (ε) = a0)
and Process’s strategy σ : A∗ → Q

! Induced (maximal) play :
σ ∗ τ ∈ (A.Q)∗.A + (A.Q)+ + (A.Q)ω

! Process wins when:
either σ ∗ τ ∈ (A.Q)+ (finite case)
or σ ∗ τ ∈ W ⊆ (A.Q)ω (infinite case)
W is the infinitary winning condition.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition
Games G is a :

! Reachability game when W = ∅,

! Safety game when W = Aω,

! Parity game [McN,Mos] with priority range [m, n]
when there is c : A → [m, n] such that

W = {w ∈ (A.Q)ω : lim inf c ◦ πA(w) ≡ 0(2)}

! Weak parity game [Mos] with priority range [m, n]
when there is c : A → [m, n] as above such that

W = {w ∈ (A.Q)ω : c(w) ↗ ∧ lim c ◦ πA(w) ≡ 0(2)} .



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition
Games G is a :

! Reachability game when W = ∅,

! Safety game when W = Aω,

! Parity game [McN,Mos] with priority range [m, n]
when there is c : A → [m, n] such that

W = {w ∈ (A.Q)ω : lim inf c ◦ πA(w) ≡ 0(2)}

! Weak parity game [Mos] with priority range [m, n]
when there is c : A → [m, n] as above such that

W = {w ∈ (A.Q)ω : c(w) ↗ ∧ lim c ◦ πA(w) ≡ 0(2)} .



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition
Games G is a :

! Reachability game when W = ∅,

! Safety game when W = Aω,

! Parity game [McN,Mos] with priority range [m, n]
when there is c : A → [m, n] such that

W = {w ∈ (A.Q)ω : lim inf c ◦ πA(w) ≡ 0(2)}

! Weak parity game [Mos] with priority range [m, n]
when there is c : A → [m, n] as above such that

W = {w ∈ (A.Q)ω : c(w) ↗ ∧ lim c ◦ πA(w) ≡ 0(2)} .



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition
Games G is a :

! Reachability game when W = ∅,

! Safety game when W = Aω,

! Parity game [McN,Mos] with priority range [m, n]
when there is c : A → [m, n] such that

W = {w ∈ (A.Q)ω : lim inf c ◦ πA(w) ≡ 0(2)}

! Weak parity game [Mos] with priority range [m, n]
when there is c : A → [m, n] as above such that

W = {w ∈ (A.Q)ω : c(w) ↗ ∧ lim c ◦ πA(w) ≡ 0(2)} .



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition
Games G is a :

! Reachability game when W = ∅, i.e. parity with range [1]

! Safety game when W = Aω, i.e. parity with range [0]

! Parity game [McN,Mos] with priority range [m, n]
when there is c : A → [m, n] such that

W = {w ∈ (A.Q)ω : lim inf c ◦ πA(w) ≡ 0(2)}

! Weak parity game [Mos] with priority range [m, n]
when there is c : A → [m, n] as above such that

W = {w ∈ (A.Q)ω : c(w) ↗ ∧ lim c ◦ πA(w) ≡ 0(2)} .



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition
Games G is a :

! Reachability game when W = ∅, i.e. parity with range [1]

! Safety game when W = Aω, i.e. parity with range [0]

! Parity game [McN,Mos] with priority range [m, n]
when there is c : A → [m, n] such that

W = {w ∈ (A.Q)ω : lim inf c ◦ πA(w) ≡ 0(2)}

! Weak parity game [Mos] with priority range [m, n]
when there is c : A → [m, n] as above such that

W = {w ∈ (A.Q)ω : c(w) ↗ ∧ lim c ◦ πA(w) ≡ 0(2)} .



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some facts

Fact
In a finite game G = 〈Q,A, a0,RS ,RF ,W 〉 with ω-regular W :

! Game determinacy: either Process or Environment player has
a winnings strategy [Martin,EmeJut]

! Computability : winning strategies are computable,[BücLand]

! Complexity: reachability or safety games can be solve in linear
time (and P-complete), weak parity games can be solved in
polynomial time, solving parity game can be solve in exp. time
(though in NP∩ co-NP) [EmeJut,Jur]



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some facts

Fact
In a finite game G = 〈Q,A, a0,RS ,RF ,W 〉 with ω-regular W :

! Game determinacy: either Process or Environment player has
a winnings strategy [Martin,EmeJut]

! Computability : winning strategies are computable,[BücLand]

! Complexity: reachability or safety games can be solve in linear
time (and P-complete), weak parity games can be solved in
polynomial time, solving parity game can be solve in exp. time
(though in NP∩ co-NP) [EmeJut,Jur]



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some facts

Fact
In a finite game G = 〈Q,A, a0,RS ,RF ,W 〉 with ω-regular W :

! Game determinacy: either Process or Environment player has
a winnings strategy [Martin,EmeJut]

! Computability : winning strategies are computable,[BücLand]

! Complexity: reachability or safety games can be solve in linear
time (and P-complete), weak parity games can be solved in
polynomial time, solving parity game can be solve in exp. time
(though in NP∩ co-NP) [EmeJut,Jur]



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some facts

Fact
In a finite game G = 〈Q,A, a0,RS ,RF ,W 〉 with ω-regular W :

! Game determinacy: either Process or Environment player has
a winnings strategy [Martin,EmeJut]

! Computability : winning strategies are computable,[BücLand]

! Complexity: reachability or safety games can be solve in linear
time (and P-complete), weak parity games can be solved in
polynomial time, solving parity game can be solve in exp. time
(though in NP∩ co-NP) [EmeJut,Jur]



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The centralized programming case

Some facts

Fact
In a finite game G = 〈Q,A, a0,RS ,RF ,W 〉 with ω-regular W :

! Game determinacy: either Process or Environment player has
a winnings strategy [Martin,EmeJut]

! Computability : winning strategies are computable,[BücLand]

! Complexity: reachability or safety games can be solve in linear
time (and P-complete), weak parity games can be solved in
polynomial time, solving parity game can be solve in exp. time
(though in NP∩ co-NP) [EmeJut,Jur]



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

The Distributed Game Setting

An n against one
player game
Many players called
Processes against
another player called
Environment !



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

The Distributed Game Setting

An n against one
player game
Many players called
Processes against
another player called
Environment !



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

The Distributed Game Setting

An n against one
player game
Many players called
Processes against
another player called
Environment !



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed games definition

Features

! Many local games Gi = 〈Qi ,Ai , ai ,Ri ,S ,Ri ,F 〉

! with partial informations for the many
Processes:
Ri ,S ⊆ Ai × Qi

! and total information for the unique
Environment

! but possibly restricted moves for
Environment RF ⊆ R1,F ⊗ · · · ⊗ Rn,F

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed games definition

Features

! Many local games Gi = 〈Qi ,Ai , ai ,Ri ,S ,Ri ,F 〉

! with partial informations for the many
Processes:
Ri ,S ⊆ Ai × Qi

! and total information for the unique
Environment

! but possibly restricted moves for
Environment RF ⊆ R1,F ⊗ · · · ⊗ Rn,F

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed games definition

Features

! Many local games Gi = 〈Qi ,Ai , ai ,Ri ,S ,Ri ,F 〉

! with partial informations for the many
Processes:
Ri ,S ⊆ Ai × Qi

! and total information for the unique
Environment

! but possibly restricted moves for
Environment RF ⊆ R1,F ⊗ · · · ⊗ Rn,F

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed games definition

Features

! Many local games Gi = 〈Qi ,Ai , ai ,Ri ,S ,Ri ,F 〉

! with partial informations for the many
Processes:
Ri ,S ⊆ Ai × Qi

! and total information for the unique
Environment

! but possibly restricted moves for
Environment RF ⊆ R1,F ⊗ · · · ⊗ Rn,F

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed games definition

Features

! Many local games Gi = 〈Qi ,Ai , ai ,Ri ,S ,Ri ,F 〉

! with partial informations for the many
Processes:
Ri ,S ⊆ Ai × Qi

! and total information for the unique
Environment

! but possibly restricted moves for
Environment RF ⊆ R1,F ⊗ · · · ⊗ Rn,F

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed games definition

Features

! Many local games Gi = 〈Qi ,Ai , ai ,Ri ,S ,Ri ,F 〉

! with partial informations for the many
Processes:
Ri ,S ⊆ Ai × Qi

! and total information for the unique
Environment

! but possibly restricted moves for
Environment RF ⊆ R1,F ⊗ · · · ⊗ Rn,F

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed games definition

Features

! Many local games Gi = 〈Qi ,Ai , ai ,Ri ,S ,Ri ,F 〉

! with partial informations for the many
Processes:
Ri ,S ⊆ Ai × Qi

! and total information for the unique
Environment

! but possibly restricted moves for
Environment RF ⊆ R1,F ⊗ · · · ⊗ Rn,F

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed games definition

Features

! Many local games Gi = 〈Qi ,Ai , ai ,Ri ,S ,Ri ,F 〉

! with partial informations for the many
Processes:
Ri ,S ⊆ Ai × Qi

! and total information for the unique
Environment

! but possibly restricted moves for
Environment RF ⊆ R1,F ⊗ · · · ⊗ Rn,F

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn.



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed plays and strategies

Definition
Given a distributed game

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn

with Q =
∏

i∈[1,n] Qi and A =
∏

i∈[1,n] Ai , solving distributed game
G amounts to finding local strategies {σi : A∗

i
→ Qi}i∈[1,n] such

that, the induced distributed global strategy σ1 ⊗ σ2 ⊗ · · · ⊗ σn

defined, for every w ∈ A∗ by

(σ1 ⊗ · · · ⊗ σn)(w) = (σi ◦ πAi
(w))i∈[1,n]

is winning in G w.r.t. a global winning condition W .



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed plays and strategies

Definition
Given a distributed game

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn

with Q =
∏

i∈[1,n] Qi and A =
∏

i∈[1,n] Ai , solving distributed game
G amounts to finding local strategies {σi : A∗

i
→ Qi}i∈[1,n] such

that, the induced distributed global strategy σ1 ⊗ σ2 ⊗ · · · ⊗ σn

defined, for every w ∈ A∗ by

(σ1 ⊗ · · · ⊗ σn)(w) = (σi ◦ πAi
(w))i∈[1,n]

is winning in G w.r.t. a global winning condition W .



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed plays and strategies

Definition
Given a distributed game

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn

with Q =
∏

i∈[1,n] Qi and A =
∏

i∈[1,n] Ai , solving distributed game
G amounts to finding local strategies {σi : A∗

i
→ Qi}i∈[1,n] such

that, the induced distributed global strategy σ1 ⊗ σ2 ⊗ · · · ⊗ σn

defined, for every w ∈ A∗ by

(σ1 ⊗ · · · ⊗ σn)(w) = (σi ◦ πAi
(w))i∈[1,n]

is winning in G w.r.t. a global winning condition W .



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Distributed plays and strategies

Definition
Given a distributed game

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn

with Q =
∏

i∈[1,n] Qi and A =
∏

i∈[1,n] Ai , solving distributed game
G amounts to finding local strategies {σi : A∗

i
→ Qi}i∈[1,n] such

that, the induced distributed global strategy σ1 ⊗ σ2 ⊗ · · · ⊗ σn

defined, for every w ∈ A∗ by

(σ1 ⊗ · · · ⊗ σn)(w) = (σi ◦ πAi
(w))i∈[1,n]

is winning in G w.r.t. a global winning condition W .



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Some facts

Fact

! Game determininacy: Distributed games are not determined,

! Computability: Distributed games are partial information
games and, as such are, in general, undecidable [PetRei80],

! Decidable sub-cases : E-deterministic or hierarchical
distributed games game are decidable [PetRei80, PnuRos90,
MohWal01]



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Some facts

Fact

! Game determininacy: Distributed games are not determined,

! Computability: Distributed games are partial information
games and, as such are, in general, undecidable [PetRei80],

! Decidable sub-cases : E-deterministic or hierarchical
distributed games game are decidable [PetRei80, PnuRos90,
MohWal01]



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Some facts

Fact

! Game determininacy: Distributed games are not determined,
hint : find a game winning for Processes but with no
distributed winning strategy,

! Computability: Distributed games are partial information
games and, as such are, in general, undecidable [PetRei80],

! Decidable sub-cases : E-deterministic or hierarchical
distributed games game are decidable [PetRei80, PnuRos90,
MohWal01]



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Some facts

Fact

! Game determininacy: Distributed games are not determined,

! Computability: Distributed games are partial information
games and, as such are, in general, undecidable [PetRei80],

! Decidable sub-cases : E-deterministic or hierarchical
distributed games game are decidable [PetRei80, PnuRos90,
MohWal01]



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Some facts

Fact

! Game determininacy: Distributed games are not determined,

! Computability: Distributed games are partial information
games and, as such are, in general, undecidable [PetRei80],

! Decidable sub-cases : E-deterministic or hierarchical
distributed games game are decidable [PetRei80, PnuRos90,
MohWal01]



On the (high) undecidability of distributed program synthesis

Games and program synthesis

The distributed programming case

Some facts

Fact

! Game determininacy: Distributed games are not determined,

! Computability: Distributed games are partial information
games and, as such are, in general, undecidable [PetRei80],

! Decidable sub-cases : E-deterministic or hierarchical
distributed games game are decidable [PetRei80, PnuRos90,
MohWal01]
hint : when one players “knows” other players positions the
game simplifies



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

How distributed game are undecidable ?
For what “minimal” features ?
Open question till today : are finite two Processes distributed
games decidable ?



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

How distributed game are undecidable ?
For what “minimal” features ?
Open question till today : are finite two Processes distributed
games decidable ?



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

How distributed game are undecidable ?
For what “minimal” features ?
Open question till today : are finite two Processes distributed
games decidable ?



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

A model of computation : domino games

Solitaire domino games (tiling systems)



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

A model of computation : domino games

Solitaire domino games (tiling systems)

Dominos
A set of dominos (or tiles) with a distinguished initial tile:



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

A model of computation : domino games

Solitaire domino games (tiling systems)

A finite tiling
(with yellow border color):



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

A model of computation : domino games

Definition
Given D = {n, s,w , e}, given a set of color C , given a set
T ⊆ (D → Q ∪ {#}) of tiles, with distinguished initial tile t0, a
T -tilling is a mapping t : IN × IN → such that for every
(i , j) ∈ IN × IN

! Initial condition: t(0, 0) = t0,

! E/W-compatibility: t(i , j)(e) = # or
t(i , j)(e) = t(i , j + 1)(w),

! N/S-compatibility: t(i , j)(n) = # or t(i , j)(n) = t(i + 1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ0
1-complete (resp.

Π0
1-complete).

Hint
There is a correspondence between (finite domain) dominos tiling
and TM accepting runs on the empty strings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

A model of computation : domino games

Definition
Given D = {n, s,w , e}, given a set of color C , given a set
T ⊆ (D → Q ∪ {#}) of tiles, with distinguished initial tile t0, a
T -tilling is a mapping t : IN × IN → such that for every
(i , j) ∈ IN × IN

! Initial condition: t(0, 0) = t0,

! E/W-compatibility: t(i , j)(e) = # or
t(i , j)(e) = t(i , j + 1)(w),

! N/S-compatibility: t(i , j)(n) = # or t(i , j)(n) = t(i + 1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ0
1-complete (resp.

Π0
1-complete).

Hint
There is a correspondence between (finite domain) dominos tiling
and TM accepting runs on the empty strings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

A model of computation : domino games

Definition
Given D = {n, s,w , e}, given a set of color C , given a set
T ⊆ (D → Q ∪ {#}) of tiles, with distinguished initial tile t0, a
T -tilling is a mapping t : IN × IN → such that for every
(i , j) ∈ IN × IN

! Initial condition: t(0, 0) = t0,

! E/W-compatibility: t(i , j)(e) = # or
t(i , j)(e) = t(i , j + 1)(w),

! N/S-compatibility: t(i , j)(n) = # or t(i , j)(n) = t(i + 1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ0
1-complete (resp.

Π0
1-complete).

Hint
There is a correspondence between (finite domain) dominos tiling
and TM accepting runs on the empty strings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

A model of computation : domino games

Definition
Given D = {n, s,w , e}, given a set of color C , given a set
T ⊆ (D → Q ∪ {#}) of tiles, with distinguished initial tile t0, a
T -tilling is a mapping t : IN × IN → such that for every
(i , j) ∈ IN × IN

! Initial condition: t(0, 0) = t0,

! E/W-compatibility: t(i , j)(e) = # or
t(i , j)(e) = t(i , j + 1)(w),

! N/S-compatibility: t(i , j)(n) = # or t(i , j)(n) = t(i + 1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ0
1-complete (resp.

Π0
1-complete).

Hint
There is a correspondence between (finite domain) dominos tiling
and TM accepting runs on the empty strings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

A model of computation : domino games

Definition
Given D = {n, s,w , e}, given a set of color C , given a set
T ⊆ (D → Q ∪ {#}) of tiles, with distinguished initial tile t0, a
T -tilling is a mapping t : IN × IN → such that for every
(i , j) ∈ IN × IN

! Initial condition: t(0, 0) = t0,

! E/W-compatibility: t(i , j)(e) = # or
t(i , j)(e) = t(i , j + 1)(w),

! N/S-compatibility: t(i , j)(n) = # or t(i , j)(n) = t(i + 1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ0
1-complete (resp.

Π0
1-complete).

Hint
There is a correspondence between (finite domain) dominos tiling
and TM accepting runs on the empty strings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Encoding dominos games into distributed games ?



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game
Define the two player game GT ,t0 where:

! Environment plays along e∗.nω,

! Process answers by choosing tiles in
T ,

! Game rules guarantee E/W -comp. on
first line,and N/S-comp. on columns.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game
Define the two player game GT ,t0 where:

! Environment plays along e∗.nω,

! Process answers by choosing tiles in
T ,

! Game rules guarantee E/W -comp. on
first line,and N/S-comp. on columns.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game
Define the two player game GT ,t0 where:

! Environment plays along e∗.nω,

! Process answers by choosing tiles in
T ,

! Game rules guarantee E/W -comp. on
first line,and N/S-comp. on columns.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game
Define the two player game GT ,t0 where:

! Environment plays along e∗.nω,

! Process answers by choosing tiles in
T ,

! Game rules guarantee E/W -comp. on
first line,and N/S-comp. on columns.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game
Define the two player game GT ,t0 where:

! Environment plays along e∗.nω,

! Process answers by choosing tiles in
T ,

! Game rules guarantee E/W -comp. on
first line,and N/S-comp. on columns.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game
Define the two player game GT ,t0 where:

! Environment plays along e∗.nω,

! Process answers by choosing tiles in
T ,

! Game rules guarantee E/W -comp. on
first line,and N/S-comp. on columns.

A play in a pre-domino game



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Quasi-tilings

Lemma
In pre-domino games, Process strategies are quasi-tilings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Quasi-tilings

Lemma
In pre-domino games, Process strategies are quasi-tilings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Quasi-tilings

Lemma
In pre-domino games, Process strategies are quasi-tilings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Synchronizing two pre-domino games

A two-process distributed game
From two copies of the pre-domino game GT ,

! Environment first chooses one extra bit (one per copy),
! and, accordingly:

! checks local plays equality when bits are (0, 0), (0, 1) or (1, 1),
! checks local strategies E/W -compatibility when bits are (1, 0),



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Synchronizing two pre-domino games

A two-process distributed game
From two copies of the pre-domino game GT ,

! Environment first chooses one extra bit (one per copy),
! and, accordingly:

! checks local plays equality when bits are (0, 0), (0, 1) or (1, 1),
! checks local strategies E/W -compatibility when bits are (1, 0),



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Synchronizing two pre-domino games

A two-process distributed game
From two copies of the pre-domino game GT ,

! Environment first chooses one extra bit (one per copy),
! and, accordingly:

! checks local plays equality when bits are (0, 0), (0, 1) or (1, 1),
! checks local strategies E/W -compatibility when bits are (1, 0),



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Synchronizing two pre-domino games

A two-process distributed game
From two copies of the pre-domino game GT ,

! Environment first chooses one extra bit (one per copy),
! and, accordingly:

! checks local plays equality when bits are (0, 0), (0, 1) or (1, 1),
! checks local strategies E/W -compatibility when bits are (1, 0),



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Forcing bits independence
Local Process answers with bits (0, 0), (0, 1) or (1, 1) must be

equal.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Forcing E/W -compatibility

Local Process answers with bits (1, 0) must be E/W -compatible.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Lemma
In game G ⊆ GT ⊗ GT , both Process local (winning) strategies
must be:

! equals and extra bit independent
since equals with bit values (0, 0), (0, 1), and (1, 1),

! E/W -compatible with bits value (1, 0),

hence Process local (winning) strategies define tilings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Lemma
In game G ⊆ GT ⊗ GT , both Process local (winning) strategies
must be:

! equals and extra bit independent
since equals with bit values (0, 0), (0, 1), and (1, 1),

! E/W -compatible with bits value (1, 0),

hence Process local (winning) strategies define tilings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Lemma
In game G ⊆ GT ⊗ GT , both Process local (winning) strategies
must be:

! equals and extra bit independent
since equals with bit values (0, 0), (0, 1), and (1, 1),

! E/W -compatible with bits value (1, 0),

hence Process local (winning) strategies define tilings.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Corollary: reachability and safety cases

Theorem
Computing winning strategies in two processes distributed game
with reachability (resp. safety) condition is Σ0

1-complete (resp.
Π0

1-complete)

Proof.
(lower bound) Applies Harel results with tiling encodings.

remark
This solve the open problem given in [MohWal01] refining
[PetRei80] and [PnuRos90].



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Corollary: reachability and safety cases

Theorem
Computing winning strategies in two processes distributed game
with reachability (resp. safety) condition is Σ0

1-complete (resp.
Π0

1-complete)

Proof.
(lower bound) Applies Harel results with tiling encodings.

remark
This solve the open problem given in [MohWal01] refining
[PetRei80] and [PnuRos90].



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Dominos and distributed games

Corollary: reachability and safety cases

Theorem
Computing winning strategies in two processes distributed game
with reachability (resp. safety) condition is Σ0

1-complete (resp.
Π0

1-complete)

Proof.
(lower bound) Applies Harel results with tiling encodings.

remark
This solve the open problem given in [MohWal01] refining
[PetRei80] and [PnuRos90].



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

The number of Process’ players does not change these results !
An the infinitary condition ?



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

The number of Process’ players does not change these results !
An the infinitary condition ?



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (The arithmetical hierarchy)

A (finite word) predicate is Σ0
0 or Π0

0 when it is recursive.
A predicate is Σ0

n+1 (resp. Π0
n+1) when is of the form ∃&xϕ with

ϕ ∈ Π0
n (resp. ∀&xϕ with ϕ ∈ Σ0

n).

Theorem (Post)

The arithmetical hierarchy is strict. A predicates is Σ0
n+1 if and

only if it is definable by TM with Π0
n oracles.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (The arithmetical hierarchy)

A (finite word) predicate is Σ0
0 or Π0

0 when it is recursive.
A predicate is Σ0

n+1 (resp. Π0
n+1) when is of the form ∃&xϕ with

ϕ ∈ Π0
n (resp. ∀&xϕ with ϕ ∈ Σ0

n).

Theorem (Post)

The arithmetical hierarchy is strict. A predicates is Σ0
n+1 if and

only if it is definable by TM with Π0
n oracles.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (The arithmetical hierarchy)

A (finite word) predicate is Σ0
0 or Π0

0 when it is recursive.
A predicate is Σ0

n+1 (resp. Π0
n+1) when is of the form ∃&xϕ with

ϕ ∈ Π0
n (resp. ∀&xϕ with ϕ ∈ Σ0

n).

Theorem (Post)

The arithmetical hierarchy is strict. A predicates is Σ0
n+1 if and

only if it is definable by TM with Π0
n oracles.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (The arithmetical hierarchy)

A (finite word) predicate is Σ0
0 or Π0

0 when it is recursive.
A predicate is Σ0

n+1 (resp. Π0
n+1) when is of the form ∃&xϕ with

ϕ ∈ Π0
n (resp. ∀&xϕ with ϕ ∈ Σ0

n).

Theorem (Post)

The arithmetical hierarchy is strict. A predicates is Σ0
n+1 if and

only if it is definable by TM with Π0
n oracles.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (ω-ATM)

An ω-Alternating Turing Machine is an Alternating Turing Machine
(ATM) possibly with infinite runs that are said accepting or not
depending on a language of (accepting) infinite words W of control
states. Parity and weak parity ω-ATM are defined accordingly.

Lemma
A languages L ⊆ Σ∗ is Σ0

n+1 (resp. Π0
n+1) if and only if it is

definable by means of an ω-ATM with weak parity condition of
range [1, n + 1] (resp. [0, n]).



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (ω-ATM)

An ω-Alternating Turing Machine is an Alternating Turing Machine
(ATM) possibly with infinite runs that are said accepting or not
depending on a language of (accepting) infinite words W of control
states. Parity and weak parity ω-ATM are defined accordingly.

Lemma
A languages L ⊆ Σ∗ is Σ0

n+1 (resp. Π0
n+1) if and only if it is

definable by means of an ω-ATM with weak parity condition of
range [1, n + 1] (resp. [0, n]).



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (ω-ATM)

An ω-Alternating Turing Machine is an Alternating Turing Machine
(ATM) possibly with infinite runs that are said accepting or not
depending on a language of (accepting) infinite words W of control
states. Parity and weak parity ω-ATM are defined accordingly.

Lemma
A languages L ⊆ Σ∗ is Σ0

n+1 (resp. Π0
n+1) if and only if it is

definable by means of an ω-ATM with weak parity condition of
range [1, n + 1] (resp. [0, n]).



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (ω-ATM)

An ω-Alternating Turing Machine is an Alternating Turing Machine
(ATM) possibly with infinite runs that are said accepting or not
depending on a language of (accepting) infinite words W of control
states. Parity and weak parity ω-ATM are defined accordingly.

Lemma
A languages L ⊆ Σ∗ is Σ0

n+1 (resp. Π0
n+1) if and only if it is

definable by means of an ω-ATM with weak parity condition of
range [1, n + 1] (resp. [0, n]).



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Theorem
Computing winning strategies in two processes distributed game
with weak parity conditions is:

1. Π0
n-complete with range [0, n − 1],

2. Σ0
n-complete with range [1, n].

Proof.
(lower bound) Shift from solitaire domino games to two player,
henceforth alternating, domino games with weak parity
condition.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Theorem
Computing winning strategies in two processes distributed game
with weak parity conditions is:

1. Π0
n-complete with range [0, n − 1],

2. Σ0
n-complete with range [1, n].

Proof.
(lower bound) Shift from solitaire domino games to two player,
henceforth alternating, domino games with weak parity
condition.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Within the arithmetical hierarchy

Theorem
Computing winning strategies in two processes distributed game
with weak parity conditions is:

1. Π0
n-complete with range [0, n − 1],

2. Σ0
n-complete with range [1, n].

Proof.
(lower bound) Shift from solitaire domino games to two player,
henceforth alternating, domino games with weak parity
condition.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Above the arithmetical hierarchy

Theorem
Computing winning strategies in two processes distributed game
with parity condition is Σ1

1-complete.

Proof.
(lower bound) Infinite tiling with Büchi condition (parity cond.
with range [0,1]) are Σ1

1-complete hence two process distributed
games with Büchi conditions.



On the (high) undecidability of distributed program synthesis

Expressiveness of distributed games

Above the arithmetical hierarchy

Theorem
Computing winning strategies in two processes distributed game
with parity condition is Σ1

1-complete.

Proof.
(lower bound) Infinite tiling with Büchi condition (parity cond.
with range [0,1]) are Σ1

1-complete hence two process distributed
games with Büchi conditions.



On the (high) undecidability of distributed program synthesis

Conclusion

! No applications !

! But a better understanding of undecidability sources !

! And an (ignored ?) interesting relationship between weak
parity conditions and the arithmetical hierarchy.



On the (high) undecidability of distributed program synthesis

Conclusion

! No applications !

! But a better understanding of undecidability sources !

! And an (ignored ?) interesting relationship between weak
parity conditions and the arithmetical hierarchy.



On the (high) undecidability of distributed program synthesis

Conclusion

! No applications !

! But a better understanding of undecidability sources !

! And an (ignored ?) interesting relationship between weak
parity conditions and the arithmetical hierarchy.



On the (high) undecidability of distributed program synthesis

Conclusion

! No applications !

! But a better understanding of undecidability sources !

! And an (ignored ?) interesting relationship between weak
parity conditions and the arithmetical hierarchy.


