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Games and program synthesis

Program synthesis through games

Designing (correct) programs with games

Designing correct programs
Goal: Given a program spec. S , design a program P s.t. P |= S .

The game reduction
Compute a game GS and a mapping P !→ σP that maps (correct)
programs P onto (winning) strategies σP . Then, designing a
(correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?
Up to (arbitrary !) game reductions programs are (winning)
strategies. The game approach is thus fairly universal.
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Games and program synthesis

The centralized programming case

Two players games definition

A game G = 〈〉

! Questions Q (Env. pos.) and Answers A
(Proc. pos.) with an initial fact a0 ∈ A,

! Game Rules : RP ⊆ A×Q and RE ⊆ Q ×A,

! Env. Strategy τ : Q∗ → A (with τE (ε) = a0)
and Process’s strategy σ : A∗ → Q

! Induced (maximal) play :
σ ∗ τ ∈ (A.Q)∗.A + (A.Q)+ + (A.Q)ω

! Process wins when:
either σ ∗ τ ∈ (A.Q)+ (finite case)
or σ ∗ τ ∈ W ⊆ (A.Q)ω (infinite case)
W is the infinitary winning condition.
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The centralized programming case

Some classical infinitary conditions

Definition
Games G is a :

! Reachability game when W = ∅,

! Safety game when W = Aω,

! Parity game [McN,Mos] with priority range [m, n]
when there is c : A → [m, n] such that

W = {w ∈ (A.Q)ω : lim inf c ◦ πA(w) ≡ 0(2)}

! Weak parity game [Mos] with priority range [m, n]
when there is c : A → [m, n] as above such that

W = {w ∈ (A.Q)ω : c(w) ↗ ∧ lim c ◦ πA(w) ≡ 0(2)} .
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Games and program synthesis

The centralized programming case

Some facts

Fact
In a finite game G = 〈Q,A, a0,RS ,RF ,W 〉 with ω-regular W :

! Game determinacy: either Process or Environment player has
a winnings strategy [Martin,EmeJut]

! Computability : winning strategies are computable,[BücLand]

! Complexity: reachability or safety games can be solve in linear
time (and P-complete), weak parity games can be solved in
polynomial time, solving parity game can be solve in exp. time
(though in NP∩ co-NP) [EmeJut,Jur]
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The distributed programming case

Distributed games definition

Features

! Many local games Gi = 〈Qi ,Ai , ai ,Ri ,S ,Ri ,F 〉

! with partial informations for the many
Processes:
Ri ,S ⊆ Ai × Qi

! and total information for the unique
Environment

! but possibly restricted moves for
Environment RF ⊆ R1,F ⊗ · · · ⊗ Rn,F

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn.
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The distributed programming case

Distributed plays and strategies

Definition
Given a distributed game

G ⊆ G1 ⊗ G2 ⊗ · · · ⊗ Gn

with Q =
∏

i∈[1,n] Qi and A =
∏

i∈[1,n] Ai , solving distributed game
G amounts to finding local strategies {σi : A∗

i
→ Qi}i∈[1,n] such

that, the induced distributed global strategy σ1 ⊗ σ2 ⊗ · · · ⊗ σn

defined, for every w ∈ A∗ by

(σ1 ⊗ · · · ⊗ σn)(w) = (σi ◦ πAi
(w))i∈[1,n]

is winning in G w.r.t. a global winning condition W .
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Some facts

Fact

! Game determininacy: Distributed games are not determined,

! Computability: Distributed games are partial information
games and, as such are, in general, undecidable [PetRei80],

! Decidable sub-cases : E-deterministic or hierarchical
distributed games game are decidable [PetRei80, PnuRos90,
MohWal01]
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Fact

! Game determininacy: Distributed games are not determined,

! Computability: Distributed games are partial information
games and, as such are, in general, undecidable [PetRei80],

! Decidable sub-cases : E-deterministic or hierarchical
distributed games game are decidable [PetRei80, PnuRos90,
MohWal01]
hint : when one players “knows” other players positions the
game simplifies
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Solitaire domino games (tiling systems)

Dominos
A set of dominos (or tiles) with a distinguished initial tile:
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A finite tiling
(with yellow border color):
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A model of computation : domino games

Definition
Given D = {n, s,w , e}, given a set of color C , given a set
T ⊆ (D → Q ∪ {#}) of tiles, with distinguished initial tile t0, a
T -tilling is a mapping t : IN × IN → such that for every
(i , j) ∈ IN × IN

! Initial condition: t(0, 0) = t0,

! E/W-compatibility: t(i , j)(e) = # or
t(i , j)(e) = t(i , j + 1)(w),

! N/S-compatibility: t(i , j)(n) = # or t(i , j)(n) = t(i + 1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ0
1-complete (resp.

Π0
1-complete).

Hint
There is a correspondence between (finite domain) dominos tiling
and TM accepting runs on the empty strings.
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Encoding dominos games into distributed games ?
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! Environment plays along e∗.nω,

! Process answers by choosing tiles in
T ,

! Game rules guarantee E/W -comp. on
first line,and N/S-comp. on columns.
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Pre-domino game

Pre-domino game
Define the two player game GT ,t0 where:

! Environment plays along e∗.nω,

! Process answers by choosing tiles in
T ,

! Game rules guarantee E/W -comp. on
first line,and N/S-comp. on columns.

A play in a pre-domino game
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A two-process distributed game
From two copies of the pre-domino game GT ,

! Environment first chooses one extra bit (one per copy),
! and, accordingly:

! checks local plays equality when bits are (0, 0), (0, 1) or (1, 1),
! checks local strategies E/W -compatibility when bits are (1, 0),
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Forcing bits independence
Local Process answers with bits (0, 0), (0, 1) or (1, 1) must be

equal.
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Forcing E/W -compatibility

Local Process answers with bits (1, 0) must be E/W -compatible.
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Lemma
In game G ⊆ GT ⊗ GT , both Process local (winning) strategies
must be:

! equals and extra bit independent
since equals with bit values (0, 0), (0, 1), and (1, 1),

! E/W -compatible with bits value (1, 0),

hence Process local (winning) strategies define tilings.
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Corollary: reachability and safety cases

Theorem
Computing winning strategies in two processes distributed game
with reachability (resp. safety) condition is Σ0

1-complete (resp.
Π0

1-complete)

Proof.
(lower bound) Applies Harel results with tiling encodings.

remark
This solve the open problem given in [MohWal01] refining
[PetRei80] and [PnuRos90].
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Within the arithmetical hierarchy

Definition (The arithmetical hierarchy)

A (finite word) predicate is Σ0
0 or Π0

0 when it is recursive.
A predicate is Σ0

n+1 (resp. Π0
n+1) when is of the form ∃&xϕ with

ϕ ∈ Π0
n (resp. ∀&xϕ with ϕ ∈ Σ0

n).

Theorem (Post)

The arithmetical hierarchy is strict. A predicates is Σ0
n+1 if and

only if it is definable by TM with Π0
n oracles.
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Definition (ω-ATM)

An ω-Alternating Turing Machine is an Alternating Turing Machine
(ATM) possibly with infinite runs that are said accepting or not
depending on a language of (accepting) infinite words W of control
states. Parity and weak parity ω-ATM are defined accordingly.

Lemma
A languages L ⊆ Σ∗ is Σ0

n+1 (resp. Π0
n+1) if and only if it is

definable by means of an ω-ATM with weak parity condition of
range [1, n + 1] (resp. [0, n]).
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Theorem
Computing winning strategies in two processes distributed game
with weak parity conditions is:

1. Π0
n-complete with range [0, n − 1],

2. Σ0
n-complete with range [1, n].

Proof.
(lower bound) Shift from solitaire domino games to two player,
henceforth alternating, domino games with weak parity
condition.
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Theorem
Computing winning strategies in two processes distributed game
with parity condition is Σ1

1-complete.

Proof.
(lower bound) Infinite tiling with Büchi condition (parity cond.
with range [0,1]) are Σ1

1-complete hence two process distributed
games with Büchi conditions.
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