David Janin

LaBRI, Université de Bordeaux I

January 21, 2007

◆□ > <□ > < = > < = > < = > < ○ < ○</p>

On the (high) undecidability of distributed program synthesis $\Box_{Overview of the talk}$

Outlines

Games and program synthesis

Program synthesis through games The centralized programming case The distributed programming case

Expressiveness of distributed games

A model of computation : domino games Dominos and distributed games Within the arithmetical hierarchy Above the arithmetical hierarchy

Conclusion

On the (high) undecidability of distributed program synthesis $\Box_{Overview of the talk}$

Outlines

Games and program synthesis

Program synthesis through games The centralized programming case The distributed programming case

Expressiveness of distributed games

A model of computation : domino games Dominos and distributed games Within the arithmetical hierarchy Above the arithmetical hierarchy

Conclusion

On the (high) undecidability of distributed program synthesis $\Box_{Overview of the talk}$

Outlines

Games and program synthesis

Program synthesis through games The centralized programming case The distributed programming case

Expressiveness of distributed games

A model of computation : domino games Dominos and distributed games Within the arithmetical hierarchy Above the arithmetical hierarchy

Conclusion

Games and program synthesis

└─Program synthesis through games

Designing (correct) programs with games

Designing correct programs

Goal: Given a program spec. S, design a program P s.t. $P \models S$.

The game reduction

Compute a game \mathcal{G}_S and a mapping $P \mapsto \sigma_P$ that maps (correct) programs P onto (winning) strategies σ_P . Then, designing a (correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?

Games and program synthesis

└─Program synthesis through games

Designing (correct) programs with games

Designing correct programs

Goal: Given a program spec. S, design a program P s.t. $P \models S$.

The game reduction

Compute a game \mathcal{G}_S and a mapping $P \mapsto \sigma_P$ that maps (correct) programs P onto (winning) strategies σ_P . Then, designing a (correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?

Games and program synthesis

└─Program synthesis through games

Designing (correct) programs with games

Designing correct programs

Goal: Given a program spec. S, design a program P s.t. $P \models S$.

The game reduction

Compute a game \mathcal{G}_S and a mapping $P \mapsto \sigma_P$ that maps (correct) programs P onto (winning) strategies σ_P . Then, designing a (correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?

Games and program synthesis

Program synthesis through games

Designing (correct) programs with games

Designing correct programs

Goal: Given a program spec. S, design a program P s.t. $P \models S$.

The game reduction

Compute a game \mathcal{G}_S and a mapping $P \mapsto \sigma_P$ that maps (correct) programs P onto (winning) strategies σ_P . Then, designing a (correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?

Games and program synthesis

Program synthesis through games

Designing (correct) programs with games

Designing correct programs

Goal: Given a program spec. S, design a program P s.t. $P \models S$.

The game reduction

Compute a game \mathcal{G}_S and a mapping $P \mapsto \sigma_P$ that maps (correct) programs P onto (winning) strategies σ_P . Then, designing a (correct) program amounts to finding a (winning) strategy.

A fundationnal approach ?

Games and program synthesis

The centralized programming case

The Two Player Game Setting

A one against one game

- ► the Process player (Smiley),
- ► the Environment player (Fred).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● のへで

Games and program synthesis

L The centralized programming case

The Two Player Game Setting

A one against one game

- the Process player (Smiley),
- ► the Environment player (Fred).

< ロ > < 団 > < 目 > < 目 > < 目 > の < @

Games and program synthesis

The centralized programming case

The Two Player Game Setting

A one against one game

- ► the Process player (Smiley),
- ► the Environment player (Fred).

▲□▶▲□▶▲□▶▲□▶ □ のへで

Games and program synthesis

L The centralized programming case

Two players games definition

A game $\mathcal{G} = \langle \rangle$

- Questions Q (Env. pos.) and Answers A (Proc. pos.) with an initial fact $a_0 \in A$,
- Game Rules : $R_P \subseteq A \times Q$ and $R_E \subseteq Q \times A$,
- Env. Strategy $\tau : Q^* \to A$ (with $\tau_E(\epsilon) = a_0$) and Process's strategy $\sigma : A^* \to Q$
- ► Induced (maximal) play : $\sigma * \tau \in (A.Q)^*.A + (A.Q)^+ + (A.Q)^{\omega}$

Process wins when:

either $\sigma * \tau \in (A, Q)^+$ (finite case) or $\sigma * \tau \in W \subseteq (A, Q)^{\omega}$ (infinite case) W is the infinitary winning condition.

< ロ > < 母 > < 国 > < 国 > < 国 > < 国 > < < 回 > < < の < ()

Games and program synthesis

L The centralized programming case

Two players games definition

A game $\mathcal{G} = \langle \boldsymbol{Q}, \boldsymbol{A} \rangle$

- ► Questions Q (Env. pos.) and Answers A (Proc. pos.) with an initial fact a₀ ∈ A,
- Game Rules : $R_P \subseteq A \times Q$ and $R_E \subseteq Q \times A$,
- Env. Strategy τ : Q^{*} → A (with τ_E(ε) = a₀) and Process's strategy σ : A^{*} → Q
- ► Induced (maximal) play : $\sigma * \tau \in (A.Q)^*.A + (A.Q)^+ + (A.Q)^{\omega}$

Process wins when:

either $\sigma * \tau \in (A.Q)^+$ (finite case) or $\sigma * \tau \in W \subseteq (A.Q)^{\omega}$ (infinite case) W is the infinitary winning condition.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

Games and program synthesis

L The centralized programming case

Two players games definition

A game $\mathcal{G} = \langle Q, A, a_0
angle$

- Questions Q (Env. pos.) and Answers A (Proc. pos.) with an initial fact $a_0 \in A$,
- Game Rules : $R_P \subseteq A \times Q$ and $R_E \subseteq Q \times A$,
- Env. Strategy $\tau : Q^* \to A$ (with $\tau_E(\epsilon) = a_0$) and Process's strategy $\sigma : A^* \to Q$
- ► Induced (maximal) play : $\sigma * \tau \in (A.Q)^*.A + (A.Q)^+ + (A.Q)^{\omega}$

Process wins when:

either $\sigma * \tau \in (A.Q)^+$ (finite case) or $\sigma * \tau \in W \subseteq (A.Q)^{\omega}$ (infinite case) W is the infinitary winning condition.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

Games and program synthesis

L The centralized programming case

Two players games definition

A game $\mathcal{G} = \langle Q, A, a_0, R_P, R_E \rangle$

- Questions Q (Env. pos.) and Answers A (Proc. pos.) with an initial fact $a_0 \in A$,
- ▶ Game Rules : $R_P \subseteq A \times Q$ and $R_E \subseteq Q \times A$,
- Env. Strategy $\tau : Q^* \to A$ (with $\tau_E(\epsilon) = a_0$) and Process's strategy $\sigma : A^* \to Q$
- ► Induced (maximal) play : $\sigma * \tau \in (A.Q)^*.A + (A.Q)^+ + (A.Q)^{\omega}$

Process wins when:

either $\sigma * \tau \in (A, Q)^+$ (finite case) or $\sigma * \tau \in W \subseteq (A, Q)^{\omega}$ (infinite case) W is the infinitary winning condition.

< ロ > < 母 > < 国 > < 国 > < 国 > < 国 > < < 回 > < < の < ()

Games and program synthesis

L The centralized programming case

Two players games definition

A game $\mathcal{G} = \langle Q, A, a_0, R_P, R_E
angle$

- Questions Q (Env. pos.) and Answers A (Proc. pos.) with an initial fact $a_0 \in A$,
- Game Rules : $R_P \subseteq A \times Q$ and $R_E \subseteq Q \times A$,
- Env. Strategy $\tau : Q^* \to A$ (with $\tau_E(\epsilon) = a_0$) and Process's strategy $\sigma : A^* \to Q$
- ► Induced (maximal) play : $\sigma * \tau \in (A.Q)^*.A + (A.Q)^+ + (A.Q)^{\omega}$

either $\sigma * \tau \in (A.Q)^+$ (finite case) or $\sigma * \tau \in W \subseteq (A.Q)^{\omega}$ (infinite case) W is the infinitary winning condition.

・・</l>

Games and program synthesis

L The centralized programming case

Two players games definition

A game $\mathcal{G} = \langle Q, A, a_0, R_P, R_E
angle$

- Questions Q (Env. pos.) and Answers A (Proc. pos.) with an initial fact $a_0 \in A$,
- Game Rules : $R_P \subseteq A \times Q$ and $R_E \subseteq Q \times A$,
- Env. Strategy $\tau : Q^* \to A$ (with $\tau_E(\epsilon) = a_0$) and Process's strategy $\sigma : A^* \to Q$
- Induced (maximal) play : $\sigma * \tau \in (A.Q)^*.A + (A.Q)^+ + (A.Q)^{\omega}$

either $\sigma * \tau \in (A, Q)^+$ (finite case) or $\sigma * \tau \in W \subseteq (A, Q)^{\omega}$ (infinite case) W is the infinitary winning condition.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - つへで

Games and program synthesis

L The centralized programming case

Two players games definition

A game $\mathcal{G} = \langle Q, A, a_0, R_P, R_E, W \rangle$

- Questions Q (Env. pos.) and Answers A (Proc. pos.) with an initial fact $a_0 \in A$,
- Game Rules : $R_P \subseteq A \times Q$ and $R_E \subseteq Q \times A$,
- Env. Strategy $\tau : Q^* \to A$ (with $\tau_E(\epsilon) = a_0$) and Process's strategy $\sigma : A^* \to Q$
- Induced (maximal) play : $\sigma * \tau \in (A.Q)^*.A + (A.Q)^+ + (A.Q)^{\omega}$
- Process wins when:

either $\sigma * \tau \in (A, Q)^+$ (finite case) or $\sigma * \tau \in W \subseteq (A, Q)^{\omega}$ (infinite case) W is the infinitary winning condition.

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition

Games \mathcal{G} is a :

- ▶ Reachability game when $W = \emptyset$,
- ► Safety game when $W = A^{\omega}$,
- Parity game [McN,Mos] with priority range [m, n] when there is c : A → [m, n] such that W = {w ∈ (A.Q)^ω : lim inf c ∘ π_A(w) ≡ 0(2)}
- ▶ Weak parity game [Mos] with priority range [m, n]when there is $c : A \to [m, n]$ as above such that $W = \{w \in (A.Q)^{\omega} : c(w) \nearrow \land \lim c \circ \pi_A(w) \equiv 0(2)\}$

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition

Games ${\mathcal G}$ is a :

• Reachability game when $W = \emptyset$,

► Safety game when $W = A^{\omega}$,

- Parity game [McN,Mos] with priority range [m, n] when there is c : A → [m, n] such that W = {w ∈ (A.Q)^ω : lim inf c ∘ π_A(w) ≡ 0(2)}
- ▶ Weak parity game [Mos] with priority range [m, n]when there is $c : A \to [m, n]$ as above such that $W = \{w \in (A.Q)^{\omega} : c(w) \nearrow \land \lim c \circ \pi_A(w) \equiv 0(2)\}$

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition

Games \mathcal{G} is a :

- Reachability game when $W = \emptyset$,
- Safety game when $W = A^{\omega}$,
- Parity game [McN,Mos] with priority range [m, n] when there is c : A → [m, n] such that W = {w ∈ (A.Q)^ω : lim inf c ∘ π_A(w) ≡ 0(2)}
- ▶ Weak parity game [Mos] with priority range [m, n]when there is $c : A \to [m, n]$ as above such that $W = \{w \in (A.Q)^{\omega} : c(w) \nearrow \land \lim c \circ \pi_A(w) \equiv 0(2)\}$

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition

Games \mathcal{G} is a :

- Reachability game when $W = \emptyset$,
- Safety game when $W = A^{\omega}$,
- ► Parity game [McN,Mos] with priority range [m, n]when there is $c : A \to [m, n]$ such that $W = \{w \in (A.Q)^{\omega} : \liminf c \circ \pi_A(w) \equiv 0(2)\}$
- ▶ Weak parity game [Mos] with priority range [m, n]when there is $c : A \to [m, n]$ as above such that $W = \{w \in (A.Q)^{\omega} : c(w) \nearrow \land \lim c \circ \pi_A(w) \equiv 0(2)\}$

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition

Games ${\mathcal G}$ is a :

- Reachability game when $W = \emptyset$, i.e. parity with range [1]
- Safety game when $W = A^{\omega}$, i.e. parity with range [0]
- ► Parity game [McN,Mos] with priority range [m, n]when there is $c : A \to [m, n]$ such that $W = \{w \in (A.Q)^{\omega} : \liminf c \circ \pi_A(w) \equiv 0(2)\}$
- Weak parity game [Mos] with priority range [m, n] when there is c : A → [m, n] as above such that W = {w ∈ (A.Q)^ω : c(w) ∧ ∧ lim c ∘ π_A(w) ≡ 0(2)}

Games and program synthesis

The centralized programming case

Some classical infinitary conditions

Definition

Games ${\mathcal G}$ is a :

- Reachability game when $W = \emptyset$, i.e. parity with range [1]
- Safety game when $W = A^{\omega}$, i.e. parity with range [0]
- ▶ Parity game [McN,Mos] with priority range [m, n]when there is $c : A \to [m, n]$ such that $W = \{w \in (A.Q)^{\omega} : \liminf c \circ \pi_A(w) \equiv 0(2)\}$
- ▶ Weak parity game [Mos] with priority range [m, n]when there is $c : A \to [m, n]$ as above such that $W = \{w \in (A.Q)^{\omega} : c(w) \nearrow \land \lim c \circ \pi_A(w) \equiv 0(2)\}$

Games and program synthesis

L The centralized programming case

Some facts

Fact

- Game determinacy: either Process or Environment player has a winnings strategy [Martin,EmeJut]
- Computability : winning strategies are computable,[BücLand]
- Complexity: reachability or safety games can be solve in linear time (and P-complete), weak parity games can be solved in polynomial time, solving parity game can be solve in exp. time (though in NP∩ co-NP) [EmeJut,Jur]

Games and program synthesis

L The centralized programming case

Some facts

Fact

- Game determinacy: either Process or Environment player has a winnings strategy [Martin,EmeJut]
- Computability : winning strategies are computable,[BücLand]
- Complexity: reachability or safety games can be solve in linear time (and P-complete), weak parity games can be solved in polynomial time, solving parity game can be solve in exp. time (though in NP∩ co-NP) [EmeJut,Jur]

Games and program synthesis

L The centralized programming case

Some facts

Fact

- Game determinacy: either Process or Environment player has a winnings strategy [Martin,EmeJut]
- Computability : winning strategies are computable,[BücLand]
- Complexity: reachability or safety games can be solve in linear time (and P-complete), weak parity games can be solved in polynomial time, solving parity game can be solve in exp. time (though in NP∩ co-NP) [EmeJut,Jur]

Games and program synthesis

L The centralized programming case

Some facts

Fact

- Game determinacy: either Process or Environment player has a winnings strategy [Martin,EmeJut]
- Computability : winning strategies are computable,[BücLand]
- Complexity: reachability or safety games can be solve in linear time (and P-complete), weak parity games can be solved in polynomial time, solving parity game can be solve in exp. time (though in NP∩ co-NP) [EmeJut,Jur]

Games and program synthesis

L The centralized programming case

Some facts

Fact

- Game determinacy: either Process or Environment player has a winnings strategy [Martin,EmeJut]
- Computability : winning strategies are computable,[BücLand]
- Complexity: reachability or safety games can be solve in linear time (and P-complete), weak parity games can be solved in polynomial time, solving parity game can be solve in exp. time (though in NP∩ co-NP) [EmeJut,Jur]

Games and program synthesis

The distributed programming case

The Distributed Game Setting

An *n* against one player game Many players called Processes against another player called Environment !

Games and program synthesis

L The distributed programming case

The Distributed Game Setting

An *n* against one player game Many players called Processes against another player called Environment !

Games and program synthesis

L The distributed programming case

The Distributed Game Setting

An *n* against one player game Many players called Processes against another player called Environment !

< ロ > < 団 > < 三 > < 三 > < 三 > < ○ < ○

Games and program synthesis

L The distributed programming case

Distributed games definition

Features

- Many local games $\mathcal{G}_i = \langle Q_i, A_i, a_i, R_{i,S}, R_{i,F} \rangle$
- with partial informations for the many Processes:

 $R_{i,S} \subseteq A_i \times Q_i$

- and total information for the unique Environment
- ▶ but possibly restricted moves for Environment $R_F \subseteq R_{1,F} \otimes \cdots \otimes R_{n,F}$

 $\mathcal{G} \subseteq \mathcal{G}_1 \otimes \mathcal{G}_2 \otimes \cdots \otimes \mathcal{G}_n.$

▲□▶▲□▶▲□▶▲□▶ ▲□ シ へ⊙

Games and program synthesis

L The distributed programming case

Distributed games definition

Features

- Many local games $\mathcal{G}_i = \langle Q_i, A_i, a_i, R_{i,S}, R_{i,F} \rangle$
- with partial informations for the many Processes:

 $R_{i,S} \subseteq A_i \times Q_i$

- and total information for the unique Environment
- ▶ but possibly restricted moves for Environment $R_F \subseteq R_{1,F} \otimes \cdots \otimes R_{n,F}$

 $\mathcal{G} \subseteq \mathcal{G}_1 \otimes \mathcal{G}_2 \otimes \cdots \otimes \mathcal{G}_n.$

Games and program synthesis

L The distributed programming case

Distributed games definition

Features

- Many local games $\mathcal{G}_i = \langle Q_i, A_i, a_i, R_{i,S}, R_{i,F} \rangle$
- with partial informations for the many Processes:

 $R_{i,S} \subseteq A_i \times Q_i$

- and total information for the unique Environment
- ▶ but possibly restricted moves for Environment $R_F \subseteq R_{1,F} \otimes \cdots \otimes R_{n,F}$

 $\mathcal{G} \subseteq \mathcal{G}_1 \otimes \mathcal{G}_2 \otimes \cdots \otimes \mathcal{G}_n.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ≫ へ⊙
Games and program synthesis

L The distributed programming case

Distributed games definition

Features

- Many local games $\mathcal{G}_i = \langle Q_i, A_i, a_i, R_{i,S}, R_{i,F} \rangle$
- with partial informations for the many Processes:
 - $R_{i,S} \subseteq A_i \times Q_i$
- and total information for the unique Environment
- ▶ but possibly restricted moves for Environment $R_F \subseteq R_{1,F} \otimes \cdots \otimes R_{n,F}$

 $\mathcal{G} \subseteq \mathcal{G}_1 \otimes \mathcal{G}_2 \otimes \cdots \otimes \mathcal{G}_n.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ≫ ≪⊙

Games and program synthesis

L The distributed programming case

Distributed games definition

Features

- Many local games $\mathcal{G}_i = \langle Q_i, A_i, a_i, R_{i,S}, R_{i,F} \rangle$
- with partial informations for the many Processes:
 - $R_{i,S} \subseteq A_i \times Q_i$
- and total information for the unique Environment
- ▶ but possibly restricted moves for Environment $R_F \subseteq R_{1,F} \otimes \cdots \otimes R_{n,F}$

Games and program synthesis

L The distributed programming case

Distributed games definition

Features

- Many local games $\mathcal{G}_i = \langle Q_i, A_i, a_i, R_{i,S}, R_{i,F} \rangle$
- with partial informations for the many Processes:
 - $R_{i,S} \subseteq A_i \times Q_i$
- and total information for the unique Environment
- ▶ but possibly restricted moves for Environment $R_F \subseteq R_{1,F} \otimes \cdots \otimes R_{n,F}$

Games and program synthesis

L The distributed programming case

Distributed games definition

Features

- Many local games $\mathcal{G}_i = \langle Q_i, A_i, a_i, R_{i,S}, R_{i,F} \rangle$
- with partial informations for the many Processes:
 - $R_{i,S} \subseteq A_i \times Q_i$
- and total information for the unique Environment
- ► but possibly restricted moves for Environment $R_F \subseteq R_{1,F} \otimes \cdots \otimes R_{n,F}$

Games and program synthesis

L The distributed programming case

Distributed games definition

Features

- Many local games $\mathcal{G}_i = \langle Q_i, A_i, a_i, R_{i,S}, R_{i,F} \rangle$
- with partial informations for the many Processes:
 - $R_{i,S} \subseteq A_i \times Q_i$
- and total information for the unique Environment
- ► but possibly restricted moves for Environment $R_F \subseteq R_{1,F} \otimes \cdots \otimes R_{n,F}$

Games and program synthesis

L The distributed programming case

Distributed plays and strategies

Definition

Given a distributed game

 $\mathcal{G}\subseteq \mathcal{G}_1\otimes \mathcal{G}_2\otimes \cdots \otimes \mathcal{G}_n$

with $Q = \prod_{i \in [1,n]} Q_i$ and $A = \prod_{i \in [1,n]} A_i$, solving distributed game G amounts to finding local strategies $\{\sigma_i : A_i^* \to Q_i\}_{i \in [1,n]}$ such that, the induced distributed global strategy $\sigma_1 \otimes \sigma_2 \otimes \cdots \otimes \sigma_n$ defined, for every $w \in A^*$ by

$$(\sigma_1 \otimes \cdots \otimes \sigma_n)(w) = (\sigma_i \circ \pi_{A_i}(w))_{i \in [1,n]}$$

is winning in \mathcal{G} w.r.t. a global winning condition W.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣�?

Games and program synthesis

L The distributed programming case

Distributed plays and strategies

Definition

Given a distributed game

$$\mathcal{G}\subseteq \mathcal{G}_1\otimes \mathcal{G}_2\otimes \cdots \otimes \mathcal{G}_n$$

with $Q = \prod_{i \in [1,n]} Q_i$ and $A = \prod_{i \in [1,n]} A_i$, solving distributed game \mathcal{G} amounts to finding local strategies $\{\sigma_i : A_i^* \to Q_i\}_{i \in [1,n]}$ such that, the induced distributed global strategy $\sigma_1 \otimes \sigma_2 \otimes \cdots \otimes \sigma_n$ defined, for every $w \in A^*$ by

$$(\sigma_1 \otimes \cdots \otimes \sigma_n)(w) = (\sigma_i \circ \pi_{A_i}(w))_{i \in [1,n]}$$

is winning in \mathcal{G} w.r.t. a global winning condition W.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● の < @

Games and program synthesis

L The distributed programming case

Distributed plays and strategies

Definition

Given a distributed game

$$\mathcal{G}\subseteq \mathcal{G}_1\otimes \mathcal{G}_2\otimes \cdots \otimes \mathcal{G}_n$$

with $Q = \prod_{i \in [1,n]} Q_i$ and $A = \prod_{i \in [1,n]} A_i$, solving distributed game \mathcal{G} amounts to finding local strategies $\{\sigma_i : A_i^* \to Q_i\}_{i \in [1,n]}$ such that, the induced distributed global strategy $\sigma_1 \otimes \sigma_2 \otimes \cdots \otimes \sigma_n$ defined, for every $w \in A^*$ by

$$(\sigma_1\otimes\cdots\otimes\sigma_n)(w)=(\sigma_i\circ\pi_{A_i}(w))_{i\in[1,n]}$$

is winning in \mathcal{G} w.r.t. a global winning condition W.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣A@

Games and program synthesis

The distributed programming case

Distributed plays and strategies

Definition

Given a distributed game

$$\mathcal{G}\subseteq \mathcal{G}_1\otimes \mathcal{G}_2\otimes \cdots \otimes \mathcal{G}_n$$

with $Q = \prod_{i \in [1,n]} Q_i$ and $A = \prod_{i \in [1,n]} A_i$, solving distributed game \mathcal{G} amounts to finding local strategies $\{\sigma_i : A_i^* \to Q_i\}_{i \in [1,n]}$ such that, the induced distributed global strategy $\sigma_1 \otimes \sigma_2 \otimes \cdots \otimes \sigma_n$ defined, for every $w \in A^*$ by

$$(\sigma_1 \otimes \cdots \otimes \sigma_n)(w) = (\sigma_i \circ \pi_{A_i}(w))_{i \in [1,n]}$$

is winning in \mathcal{G} w.r.t. a global winning condition W.

Games and program synthesis

L The distributed programming case

Some facts

- ► Game determininacy: Distributed games are not determined,
- Computability: Distributed games are partial information games and, as such are, in general, undecidable [PetRei80],
- Decidable sub-cases : E-deterministic or hierarchical distributed games game are decidable [PetRei80, PnuRos90, MohWal01]

Games and program synthesis

L The distributed programming case

Some facts

- ► Game determininacy: Distributed games are not determined,
- Computability: Distributed games are partial information games and, as such are, in general, undecidable [PetRei80],
- Decidable sub-cases : E-deterministic or hierarchical distributed games game are decidable [PetRei80, PnuRos90, MohWal01]

Games and program synthesis

L The distributed programming case

Some facts

- Game determininacy: Distributed games are not determined, hint : find a game winning for Processes but with no distributed winning strategy,
- Computability: Distributed games are partial information games and, as such are, in general, undecidable [PetRei80],
- Decidable sub-cases : E-deterministic or hierarchical distributed games game are decidable [PetRei80, PnuRos90, MohWal01]

Games and program synthesis

L The distributed programming case

Some facts

- Game determininacy: Distributed games are not determined,
- Computability: Distributed games are partial information games and, as such are, in general, undecidable [PetRei80],
- Decidable sub-cases : E-deterministic or hierarchical distributed games game are decidable [PetRei80, PnuRos90, MohWal01]

Games and program synthesis

L The distributed programming case

Some facts

- Game determininacy: Distributed games are not determined,
- Computability: Distributed games are partial information games and, as such are, in general, undecidable [PetRei80],
- Decidable sub-cases : E-deterministic or hierarchical distributed games game are decidable [PetRei80, PnuRos90, MohWal01]

Games and program synthesis

L The distributed programming case

Some facts

- Game determininacy: Distributed games are not determined,
- Computability: Distributed games are partial information games and, as such are, in general, undecidable [PetRei80],
- Decidable sub-cases : E-deterministic or hierarchical distributed games game are decidable [PetRei80, PnuRos90, MohWal01] hint : when one players "knows" other players positions the game simplifies

Expressiveness of distributed games

How distributed game are undecidable ?

For what "minimal" features ? Open question till today : are finite two Processes distributed games decidable ?

Expressiveness of distributed games

How distributed game are undecidable ? For what "minimal" features ?

Open question till today : are finite two Processes distributed games decidable ?

Expressiveness of distributed games

How distributed game are undecidable ? For what "minimal" features ? Open question till today : are finite two Processes distributed games decidable ?

Expressiveness of distributed games

LA model of computation : domino games

Solitaire domino games (tiling systems)

Expressiveness of distributed games

A model of computation : domino games

Solitaire domino games (tiling systems)

Expressiveness of distributed games

A model of computation : domino games

Solitaire domino games (tiling systems)

< ロ > < 回 > < 国 > < 国 > < 国 > < 国 > < 回 > < < の < の < の<

Expressiveness of distributed games

A model of computation : domino games

Definition

Given $D = \{n, s, w, e\}$, given a set of color C, given a set $T \subseteq (D \rightarrow Q \cup \{\#\})$ of tiles, with distinguished initial tile t_0 , a *T*-tilling is a mapping $t : IN \times IN \rightarrow$ such that for every $(i, j) \in IN \times IN$

- ▶ Initial condition: $t(0,0) = t_0$,
- ► E/W-compatibility: t(i,j)(e) = # or t(i,j)(e) = t(i,j+1)(w),
- ▶ **N/S-compatibility**: t(i,j)(n) = # or t(i,j)(n) = t(i+1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ_1^0 -complete (resp. Π_1^0 -complete).

Hint

Expressiveness of distributed games

A model of computation : domino games

Definition

Given $D = \{n, s, w, e\}$, given a set of color C, given a set $T \subseteq (D \rightarrow Q \cup \{\#\})$ of tiles, with distinguished initial tile t_0 , a *T*-tilling is a mapping $t : IN \times IN \rightarrow$ such that for every $(i, j) \in IN \times IN$

- ▶ Initial condition: $t(0,0) = t_0$,
- E/W-compatibility: t(i,j)(e) = # or t(i,j)(e) = t(i,j+1)(w),
- ▶ **N/S-compatibility**: t(i,j)(n) = # or t(i,j)(n) = t(i+1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ_1^0 -complete (resp. Π_1^0 -complete).

Hint

Expressiveness of distributed games

A model of computation : domino games

Definition

Given $D = \{n, s, w, e\}$, given a set of color C, given a set $T \subseteq (D \rightarrow Q \cup \{\#\})$ of tiles, with distinguished initial tile t_0 , a *T*-tilling is a mapping $t : IN \times IN \rightarrow$ such that for every $(i, j) \in IN \times IN$

- ▶ Initial condition: $t(0,0) = t_0$,
- E/W-compatibility: t(i,j)(e) = # or t(i,j)(e) = t(i,j+1)(w),
- ▶ N/S-compatibility: t(i,j)(n) = # or t(i,j)(n) = t(i+1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ_1^0 -complete (resp. Π_1^0 -complete).

Hint

Expressiveness of distributed games

A model of computation : domino games

Definition

Given $D = \{n, s, w, e\}$, given a set of color C, given a set $T \subseteq (D \rightarrow Q \cup \{\#\})$ of tiles, with distinguished initial tile t_0 , a *T*-tilling is a mapping $t : IN \times IN \rightarrow$ such that for every $(i, j) \in IN \times IN$

- ▶ Initial condition: $t(0,0) = t_0$,
- E/W-compatibility: t(i,j)(e) = # or t(i,j)(e) = t(i,j+1)(w),
- ▶ N/S-compatibility: t(i,j)(n) = # or t(i,j)(n) = t(i+1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ_1^0 -complete (resp. Π_1^0 -complete).

Hint

Expressiveness of distributed games

A model of computation : domino games

Definition

Given $D = \{n, s, w, e\}$, given a set of color C, given a set $T \subseteq (D \rightarrow Q \cup \{\#\})$ of tiles, with distinguished initial tile t_0 , a *T*-tilling is a mapping $t : IN \times IN \rightarrow$ such that for every $(i, j) \in IN \times IN$

- ▶ Initial condition: $t(0,0) = t_0$,
- E/W-compatibility: t(i,j)(e) = # or t(i,j)(e) = t(i,j+1)(w),
- ▶ N/S-compatibility: t(i,j)(n) = # or t(i,j)(n) = t(i+1)(s),

Theorem (Harel et al.)

The set of finite (resp. infinite) domino tiling is Σ_1^0 -complete (resp. Π_1^0 -complete).

Hint

There is a correspondence between (finite domain) dominos tiling and TM accepting runs on the empty strings.

Expressiveness of distributed games

L Dominos and distributed games

Encoding dominos games into distributed games ?

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game

- Environment plays along $e^*.n^{\omega}$,
- Process answers by choosing tiles in *T*,
- ► Game rules guarantee *E*/*W*-comp. on first line,and *N*/*S*-comp. on columns.

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game

- Environment plays along $e^*.n^{\omega}$,
- Process answers by choosing tiles in *T*,
- ► Game rules guarantee *E*/*W*-comp. on first line,and *N*/*S*-comp. on columns.

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game

- Environment plays along $e^*.n^{\omega}$,
- Process answers by choosing tiles in *T*,
- ► Game rules guarantee *E*/*W*-comp. on first line,and *N*/*S*-comp. on columns.

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game

- Environment plays along $e^*.n^{\omega}$,
- Process answers by choosing tiles in *T*,
- Game rules guarantee E/W-comp. on first line, and N/S-comp. on columns.

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game

- Environment plays along $e^*.n^{\omega}$,
- Process answers by choosing tiles in *T*,
- Game rules guarantee E/W-comp. on first line, and N/S-comp. on columns.

Expressiveness of distributed games

Dominos and distributed games

Pre-domino game

Pre-domino game

- Environment plays along $e^*.n^{\omega}$,
- Process answers by choosing tiles in Τ,
- Game rules guarantee E/W-comp. on first line, and N/S-comp. on columns.

Expressiveness of distributed games

L Dominos and distributed games

Quasi-tilings

Lemma

In pre-domino games, Process strategies are quasi-tilings.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

Expressiveness of distributed games

L Dominos and distributed games

Quasi-tilings

Lemma

In pre-domino games, Process strategies are quasi-tilings.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Expressiveness of distributed games

Dominos and distributed games

Quasi-tilings

Lemma

In pre-domino games, Process strategies are quasi-tilings.

Expressiveness of distributed games

Dominos and distributed games

Synchronizing two pre-domino games

A two-process distributed game

From two copies of the pre-domino game $\mathcal{G}_{\mathcal{T}}$,

- Environment first chooses one extra bit (one per copy),
- ► and, accordingly:
 - checks local plays equality when bits are (0,0), (0,1) or (1,1),
 - checks local strategies E/W-compatibility when bits are (1, 0),

Expressiveness of distributed games

Dominos and distributed games

Synchronizing two pre-domino games

A two-process distributed game

From two copies of the pre-domino game $\mathcal{G}_{\mathcal{T}}$,

- Environment first chooses one extra bit (one per copy),
- and, accordingly:
 - checks local plays equality when bits are (0,0), (0,1) or (1,1),
 - checks local strategies E/W-compatibility when bits are (1,0),

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Expressiveness of distributed games

L Dominos and distributed games

Synchronizing two pre-domino games

A two-process distributed game

From two copies of the pre-domino game $\mathcal{G}_{\mathcal{T}}$,

- Environment first chooses one extra bit (one per copy),
- ► and, accordingly:
 - checks local plays equality when bits are (0,0), (0,1) or (1,1),
 - checks local strategies E/W-compatibility when bits are (1,0),

Expressiveness of distributed games

Dominos and distributed games

Synchronizing two pre-domino games

A two-process distributed game

From two copies of the pre-domino game $\mathcal{G}_{\mathcal{T}}$,

- Environment first chooses one extra bit (one per copy),
- ► and, accordingly:
 - checks local plays equality when bits are (0,0), (0,1) or (1,1),
 - checks local strategies E/W-compatibility when bits are (1,0),

Expressiveness of distributed games

Dominos and distributed games

Forcing bits independence

Local Process answers with bits (0,0), (0,1) or (1,1) must be

Expressiveness of distributed games

Dominos and distributed games

Forcing E/W-compatibility

Local Process answers with bits (1,0) must be E/W-compatible.

Expressiveness of distributed games

Dominos and distributed games

Lemma

In game $\mathcal{G} \subseteq \mathcal{G}_T \otimes \mathcal{G}_T$, both Process local (winning) strategies must be:

- equals and extra bit independent since equals with bit values (0,0), (0,1), and (1,1),
- ► *E*/*W*-compatible with bits value (1,0),

hence Process local (winning) strategies define tilings.

Expressiveness of distributed games

Dominos and distributed games

Lemma

In game $\mathcal{G} \subseteq \mathcal{G}_T \otimes \mathcal{G}_T$, both Process local (winning) strategies must be:

- equals and extra bit independent since equals with bit values (0,0), (0,1), and (1,1),
- \blacktriangleright *E*/*W*-compatible with bits value (1,0),

hence Process local (winning) strategies define tilings.

Expressiveness of distributed games

Dominos and distributed games

Lemma

In game $\mathcal{G} \subseteq \mathcal{G}_T \otimes \mathcal{G}_T$, both Process local (winning) strategies must be:

- equals and extra bit independent since equals with bit values (0,0), (0,1), and (1,1),
- E/W-compatible with bits value (1,0),

hence Process local (winning) strategies define tilings.

Expressiveness of distributed games

L Dominos and distributed games

Corollary: reachability and safety cases

Theorem

Computing winning strategies in two processes distributed game with reachability (resp. safety) condition is Σ_1^0 -complete (resp. Π_1^0 -complete)

Proof.

(lower bound) Applies Harel results with tiling encodings.

remark

This solve the open problem given in [MohWal01] refining [PetRei80] and [PnuRos90].

Expressiveness of distributed games

Dominos and distributed games

Corollary: reachability and safety cases

Theorem

Computing winning strategies in two processes distributed game with reachability (resp. safety) condition is Σ_1^0 -complete (resp. Π_1^0 -complete)

Proof.

(lower bound) Applies Harel results with tiling encodings.

emark

This solve the open problem given in [MohWal01] refining [PetRei80] and [PnuRos90].

Expressiveness of distributed games

Dominos and distributed games

Corollary: reachability and safety cases

Theorem

Computing winning strategies in two processes distributed game with reachability (resp. safety) condition is Σ_1^0 -complete (resp. Π_1^0 -complete)

Proof.

(lower bound) Applies Harel results with tiling encodings.

remark

This solve the open problem given in [MohWal01] refining [PetRei80] and [PnuRos90].

L_{Expressiveness} of distributed games

Within the arithmetical hierarchy

The number of Process' players does not change these results ! An the infinitary condition ?

Expressiveness of distributed games

Within the arithmetical hierarchy

The number of Process' players does not change these results ! An the infinitary condition ?

Expressiveness of distributed games

-Within the arithmetical hierarchy

Definition (The arithmetical hierarchy)

A (finite word) predicate is Σ_0^0 or Π_0^0 when it is recursive.

A predicate is Σ_{n+1}^0 (resp. Π_{n+1}^0) when is of the form $\exists \vec{x}\varphi$ with $\varphi \in \Pi_n^0$ (resp. $\forall \vec{x}\varphi$ with $\varphi \in \Sigma_n^0$).

Theorem (Post)

The arithmetical hierarchy is strict. A predicates is Σ_{n+1}^0 if and only if it is definable by TM with Π_n^0 oracles.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲□ ▶ ④ < ⊙

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (The arithmetical hierarchy)

A (finite word) predicate is Σ_0^0 or Π_0^0 when it is recursive. A predicate is Σ_{n+1}^0 (resp. Π_{n+1}^0) when is of the form $\exists \vec{x}\varphi$ with $\varphi \in \Pi_n^0$ (resp. $\forall \vec{x}\varphi$ with $\varphi \in \Sigma_n^0$).

Theorem (Post)

The arithmetical hierarchy is strict. A predicates is Σ_{n+1}^0 if and only if it is definable by TM with Π_n^0 oracles.

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (The arithmetical hierarchy)

A (finite word) predicate is Σ_0^0 or Π_0^0 when it is recursive. A predicate is Σ_{n+1}^0 (resp. Π_{n+1}^0) when is of the form $\exists \vec{x}\varphi$ with $\varphi \in \Pi_n^0$ (resp. $\forall \vec{x}\varphi$ with $\varphi \in \Sigma_n^0$).

Theorem (Post)

The arithmetical hierarchy is strict. A predicates is Σ_{n+1}^{0} if and only if it is definable by TM with Π_{n}^{0} oracles.

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (The arithmetical hierarchy)

A (finite word) predicate is Σ_0^0 or Π_0^0 when it is recursive. A predicate is Σ_{n+1}^0 (resp. Π_{n+1}^0) when is of the form $\exists \vec{x}\varphi$ with $\varphi \in \Pi_n^0$ (resp. $\forall \vec{x}\varphi$ with $\varphi \in \Sigma_n^0$).

Theorem (Post)

The arithmetical hierarchy is strict. A predicates is Σ_{n+1}^0 if and only if it is definable by TM with Π_n^0 oracles.

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (ω -ATM)

An ω -Alternating Turing Machine is an Alternating Turing Machine (ATM) possibly with infinite runs that are said accepting or not depending on a language of (accepting) infinite words W of control states. Parity and weak parity ω -ATM are defined accordingly.

Lemma

A languages $L \subseteq \Sigma^*$ is Σ_{n+1}^0 (resp. Π_{n+1}^0) if and only if it is definable by means of an ω -ATM with weak parity condition of range [1, n + 1] (resp. [0, n]).

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (ω -ATM)

An ω -Alternating Turing Machine is an Alternating Turing Machine (ATM) possibly with infinite runs that are said accepting or not depending on a language of (accepting) infinite words W of control states. Parity and weak parity ω -ATM are defined accordingly.

Lemma

A languages $L \subseteq \Sigma^*$ is Σ_{n+1}^0 (resp. Π_{n+1}^0) if and only if it is definable by means of an ω -ATM with weak parity condition of range [1, n + 1] (resp. [0, n]).

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (ω -ATM)

An ω -Alternating Turing Machine is an Alternating Turing Machine (ATM) possibly with infinite runs that are said accepting or not depending on a language of (accepting) infinite words W of control states. Parity and weak parity ω -ATM are defined accordingly.

Lemma

A languages $L \subseteq \Sigma^*$ is Σ_{n+1}^0 (resp. Π_{n+1}^0) if and only if it is definable by means of an ω -ATM with weak parity condition of range [1, n + 1] (resp. [0, n]).

Expressiveness of distributed games

Within the arithmetical hierarchy

Definition (ω -ATM)

An ω -Alternating Turing Machine is an Alternating Turing Machine (ATM) possibly with infinite runs that are said accepting or not depending on a language of (accepting) infinite words W of control states. Parity and weak parity ω -ATM are defined accordingly.

Lemma

A languages $L \subseteq \Sigma^*$ is Σ_{n+1}^0 (resp. Π_{n+1}^0) if and only if it is definable by means of an ω -ATM with weak parity condition of range [1, n+1] (resp. [0, n]).

Expressiveness of distributed games

Within the arithmetical hierarchy

Theorem

Computing winning strategies in two processes distributed game with weak parity conditions is:

- 1. Π_n^0 -complete with range [0, n-1],
- 2. Σ_n^0 -complete with range [1, n].

Proof.

(lower bound) Shift from solitaire domino games to two player, henceforth alternating, domino games with weak parity condition.

Expressiveness of distributed games

Within the arithmetical hierarchy

Theorem

Computing winning strategies in two processes distributed game with weak parity conditions is:

- 1. Π_n^0 -complete with range [0, n-1],
- 2. Σ_n^0 -complete with range [1, n].

Proof.

(lower bound) Shift from solitaire domino games to two player, henceforth alternating, domino games with weak parity condition.

Expressiveness of distributed games

Within the arithmetical hierarchy

Theorem

Computing winning strategies in two processes distributed game with weak parity conditions is:

- 1. Π_n^0 -complete with range [0, n-1],
- 2. Σ_n^0 -complete with range [1, n].

Proof.

(lower bound) Shift from solitaire domino games to two player, henceforth alternating, domino games with weak parity condition.

Expressiveness of distributed games

Above the arithmetical hierarchy

Theorem

Computing winning strategies in two processes distributed game with parity condition is Σ_1^1 -complete.

Proof.

(lower bound) Infinite tiling with Büchi condition (parity cond. with range [0,1]) are Σ_1^1 -complete hence two process distributed games with Büchi conditions.

Expressiveness of distributed games

-Above the arithmetical hierarchy

Theorem

Computing winning strategies in two processes distributed game with parity condition is Σ_1^1 -complete.

Proof.

(lower bound) Infinite tiling with Büchi condition (parity cond. with range [0,1]) are Σ_1^1 -complete hence two process distributed games with Büchi conditions.

- ► No applications !
- But a better understanding of undecidability sources !
- And an (ignored ?) interesting relationship between weak parity conditions and the arithmetical hierarchy.

On the (high) undecidability of distributed program synthesis $\cap{L-Conclusion}$

No applications !

- But a better understanding of undecidability sources !
- And an (ignored ?) interesting relationship between weak parity conditions and the arithmetical hierarchy.

< ロ > < 団 > < 目 > < 目 > < 目 > < 回 > < < の < の<

On the (high) undecidability of distributed program synthesis $\cap{L-Conclusion}$

- No applications !
- But a better understanding of undecidability sources !
- And an (ignored ?) interesting relationship between weak parity conditions and the arithmetical hierarchy.

- No applications !
- But a better understanding of undecidability sources !
- And an (ignored ?) interesting relationship between weak parity conditions and the arithmetical hierarchy.