Straightening Drawings of Clustered Hierarchical Graphs

Sergey Bereg¹, Markus Völker², Alexander Wolff³, Yuanyi Zhang¹

¹ Department of Computer Science, University of Texas at Dallas, U.S.A.
 ² Fakultät für Informatik, Universität Karlsruhe, Germany
 ³ Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, the Netherlands

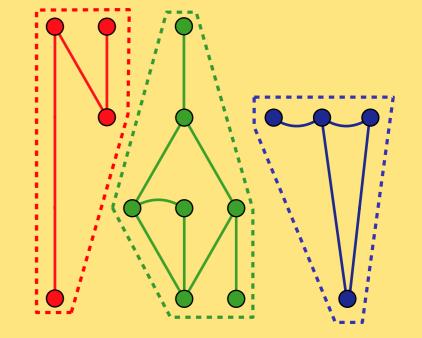
Introduction

Clustered Graphs

Definition

A clustered graph $\mathcal{C} = (G,T)$ consists of

- an undirected graph G = (V, E)
- a partition of the vertex set V into clusters



Structural Information

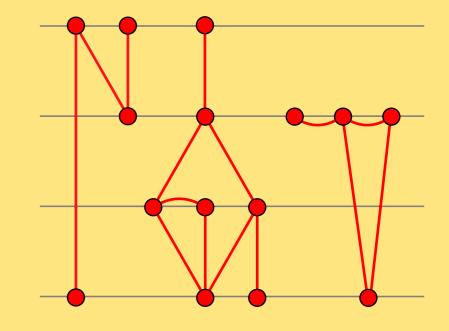
- vertices in the same cluster are interpreted as being similar
- vertices in different clusters are interpreted as being different

Hierarchical Graphs

Definition

A hierarchical graph $\mathcal{L}=(G,\lambda)$ is given by

- an undirected graph G = (V, E)
- an assignment $\lambda: V \to \{1, \dots, k\}$ of the vertices to horizontal layers

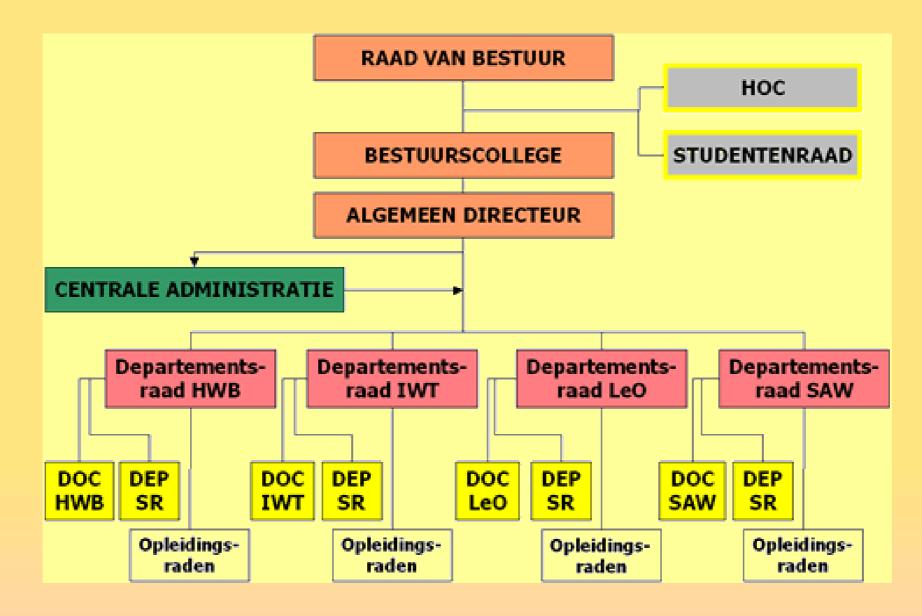


Structural Information

- $\bullet\,$ the vertex set V is partitioned by the rank of the vertices
- the rank of a vertex reflects its importance in relation to vertices of lower or higher rank

Hierarchical Graphs

Example - Organigrams



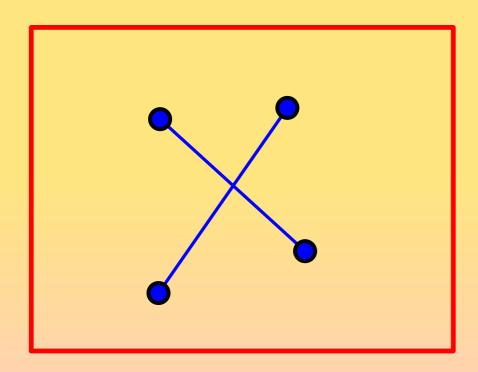
organigram of Hogeschool Limburg

Compound Planar Graphs

Definition

A graph is compound planar (c-planar), if it admits a drawing

- without edge-crossings
- without edge-region-crossings

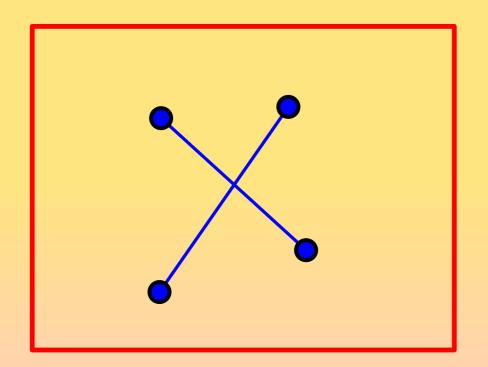


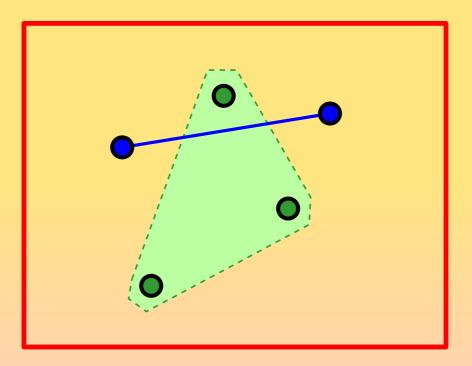
Compound Planar Graphs

Definition

A graph is compound planar (c-planar), if it admits a drawing

- without edge-crossings
- without edge-region-crossings (region = convex hull of a cluster)

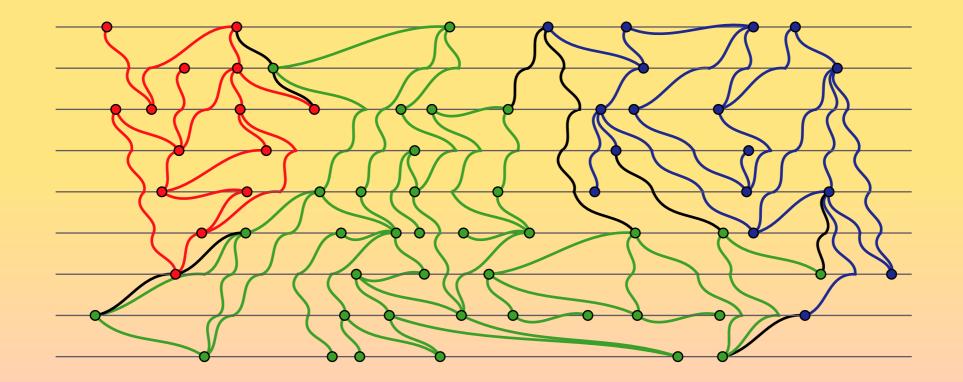




Problem Definition

Input

- embedded c-planar graph G(V, E)
- disjoint clusters $C_1 \cup \ldots \cup C_m = V$
- layers $\lambda: V \to \{1, 2, \dots, k\}$

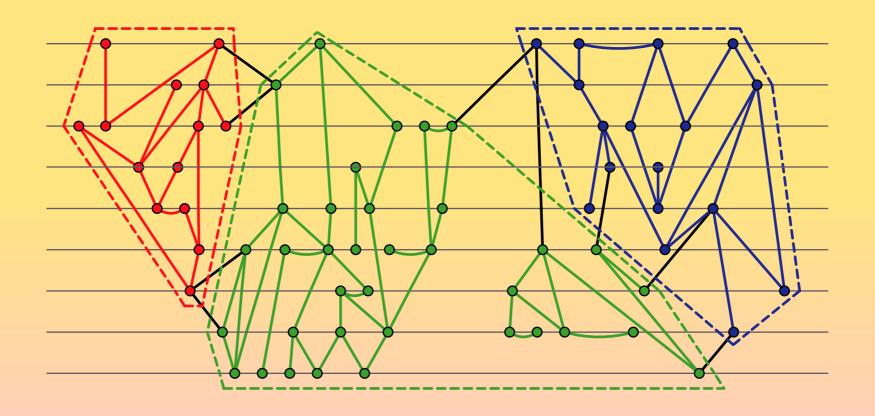


Problem Definition

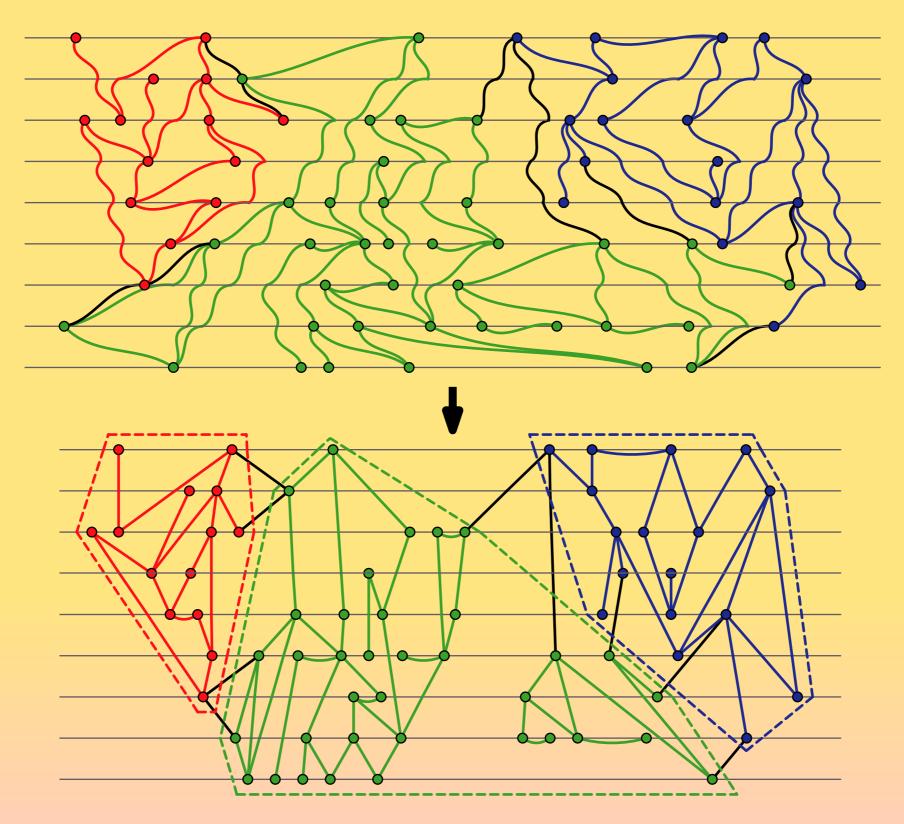
Output

Drawing of G such that

- edges are straight-line segments,
- clusters lie in disjoint convex regions,
- no edge intersects a cluster boundary twice.



Problem Definition



Related Work

Eades, Feng, Lin, Nagamochi (2005)

- input: compound planar graph G
- *output:* drawing of G with
 - straight edges
 - convex cluster regions
- time complexity: O(n)
- disadvantage: places each vertex at a unique layer $\Rightarrow k \times k$ square grid will be drawn on k^2 layers

For further references to related work please refer to our paper.

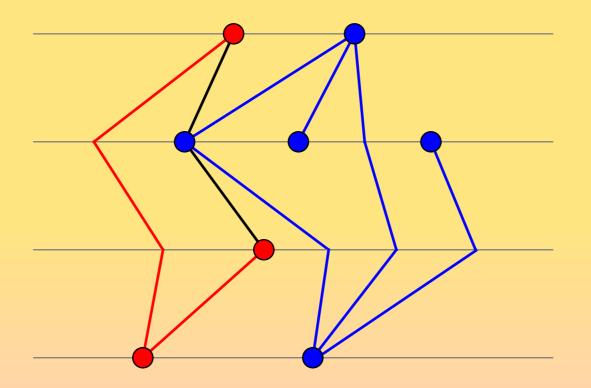
Overview of our work

Our aim: Producing vertical compact drawings

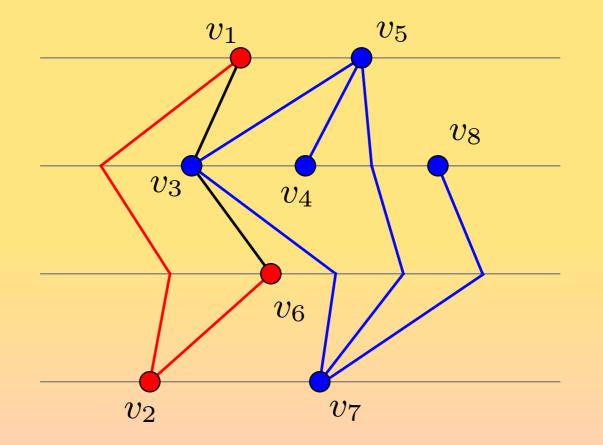
- Two fast algorithms
 - run in $O(n^2)$ and O(n) time, resp.,
 - have certain preconditions.
- LP formulation
 - always finds a drawing if one exists,
 - produces nicer results due to global optimization,
 - slower.

LP Formulation

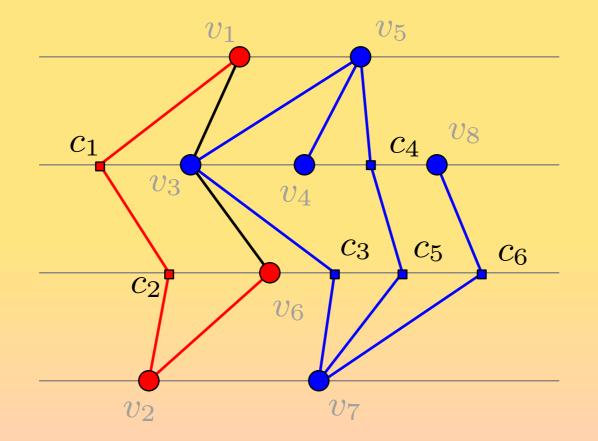
- vertex
- edge-level-crossing



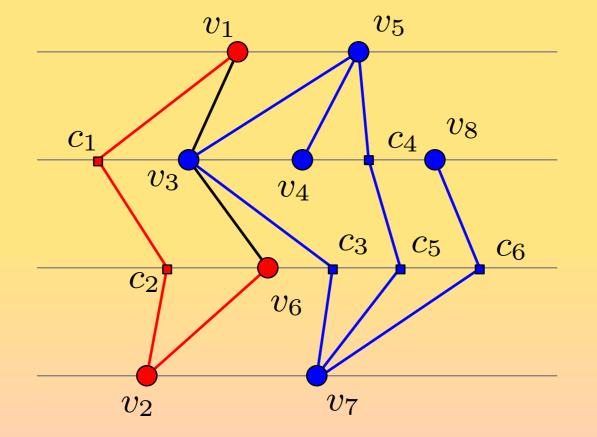
- vertex
- edge-level-crossing



- vertex
- edge-level-crossing



- vertex $\Rightarrow O(n)$ variables
- edge-level-crossing $\Rightarrow O(n)$ variables



We want ...

• straight line edges

 $\Rightarrow O(n)$ constraints

- preservation of the original embedding
- minimum distances between vertices and edges
- disjoint convex hulls

q

V

U

For each edge
$$(u, v) \in E$$
 and each crossing q of (u, v) with a layer add constraint:

$$\begin{bmatrix} \operatorname{RelPos}(q, u, v) = \begin{vmatrix} q_x & \lambda(q) & 1 \\ u_x & \lambda(u) & 1 \\ v_x & \lambda(v) & 1 \end{vmatrix} \stackrel{!}{=} 0$$

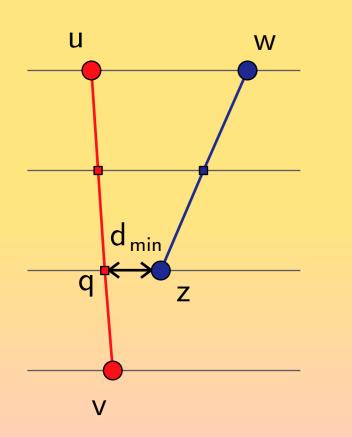
 $\Rightarrow O(n)$ constraints

 $\Rightarrow O(n)$ constraints

LP formulation: constraints

We want ...

- straight line edges
- preservation of the original embedding
- minimum distances between vertices and edges $\Rightarrow O(n)$ constraints
- disjoint convex hulls



For each vertex w to the right of a vertex u add constraint:

$$u_x + d_{min} \le w_x$$

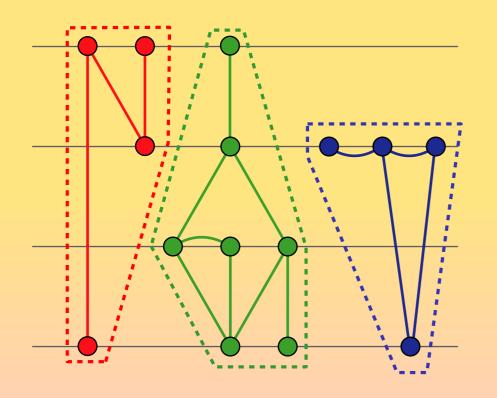
For each vertex z to the right of an edgelayer crossing q add constraint:

$$q_x + d_{min} \le z_x$$

We want ...

- straight line edges
- preservation of the original embedding
- minimum distances between vertices and edges
- disjoint convex hulls

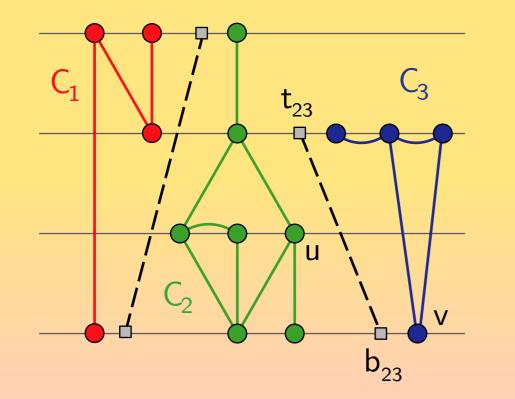
 $\Rightarrow O(n) \text{ constraints} \\\Rightarrow O(n) \text{ constraints} \\\Rightarrow O(n) \text{ constraints}$



We want ...

- straight line edges
- preservation of the original embedding
- minimum distances between vertices and edges
- disjoint convex hulls

 $\Rightarrow O(n) \text{ constraints}$ $\Rightarrow O(n) \text{ constraints}$ $\Rightarrow O(n) \text{ constraints}$ $\Rightarrow O(n) \text{ constraints}$



 add separating line between adjoining pairs of clusters

maintain position in relation to the separating line

 $RelPos(u, b_{23}, t_{23}) > 0$ $RelPos(v, b_{23}, t_{23}) < 0$

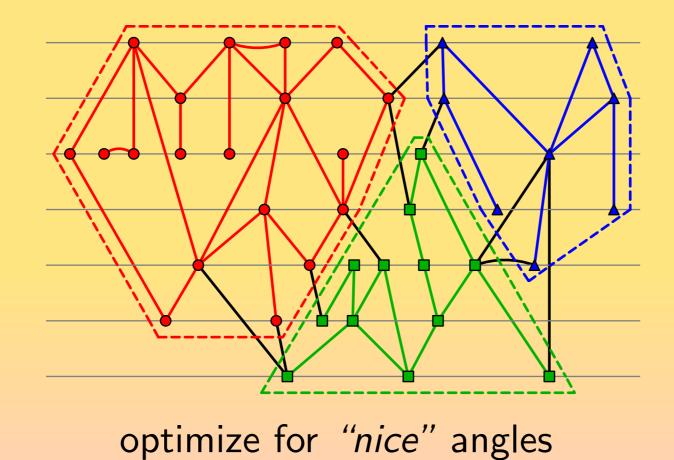
We want ...

- straight line edges
- preservation of the original embedding
- minimum distances between vertices and edges
- disjoint convex hulls

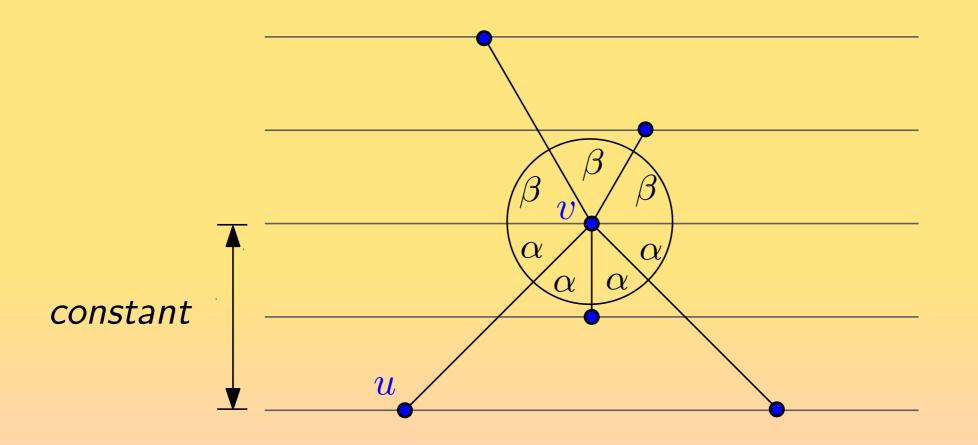
 $\Rightarrow O(n) \text{ constraints} \\\Rightarrow O(n) \text{ constraints} \\\Rightarrow O(n) \text{ constraints} \\\Rightarrow O(n) \text{ constraints} \\\Rightarrow O(n) \text{ constraints}$

Lemma. Our LP uses O(n) variables and O(n) constraints.

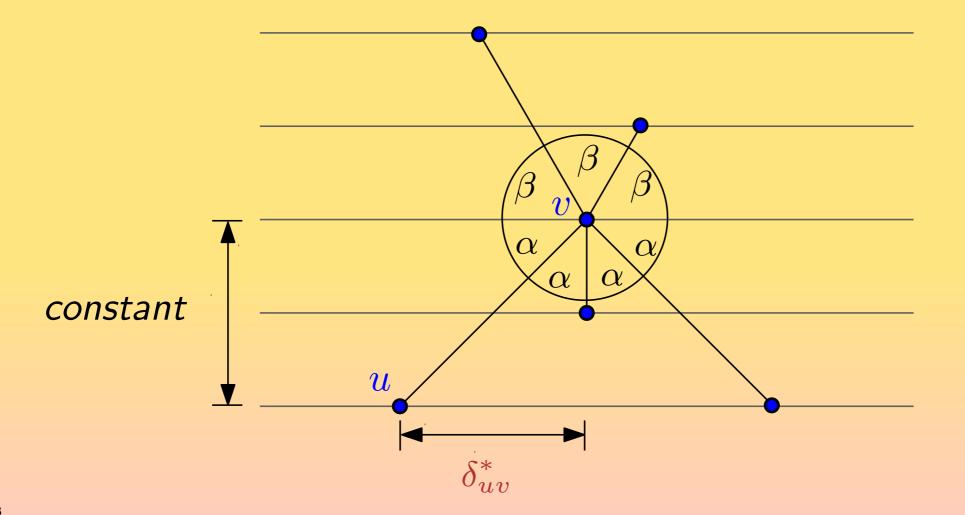
- many optimization criteria possible (angles, width, ...)
- optimization for a good angular resolution works very well
- question: How to optimize angles using **linear** constraints?



- uniformly distribute the 180° angular space above and below each vertex
- for each vertex the optimal relative positions of all adjacent vertices can be precomputed using trigonometric functions



- now we can compute an optimal x-offset δ_{uv}^* between u and v
- the actual offset δ_{uv} is given by $x_u x_v$
- the absolute difference μ_{uv} of δ_{uv} and δ^*_{uv} can expressed as follows:



- now we can compute an optimal x-offset δ^*_{uv} between u and v
- the actual offset δ_{uv} is given by $x_u x_v$
- the absolute difference μ_{uv} of δ_{uv} and δ^*_{uv} can expressed as follows:

$$\mu_{uv} \ge +\delta_{uv}^* - \delta_{uv}$$
$$\mu_{uv} \ge -\delta_{uv}^* + \delta_{uv}$$

• our objective function minimizes these deviations μ_{uv} from the optimum

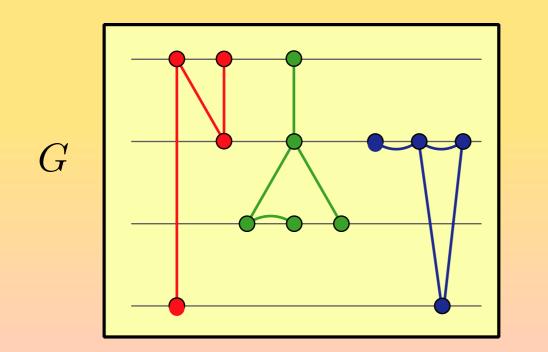
minimize
$$\sum_{\{u,v\}\in E} (\mu_{uv} + \mu_{vu})$$

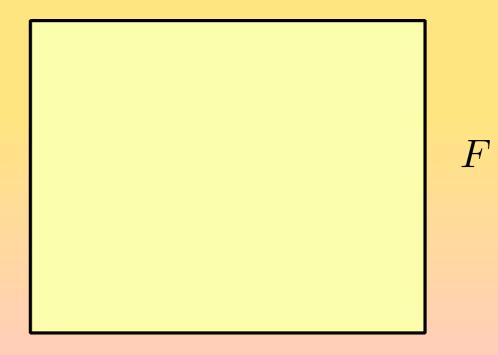
Recursive Algorithm

Let G = (V, E) be the graph that we want to draw.

Define the *cluster adjacency graph* F as the directed graph...

- whose vertices correspond to clusters in G
- that has a directed edge between the cluster vertices C and C' if there
 is a level i on which a vertex of C or an edge connected to a vertex of
 C lies to the left of a vertex or edge of C'

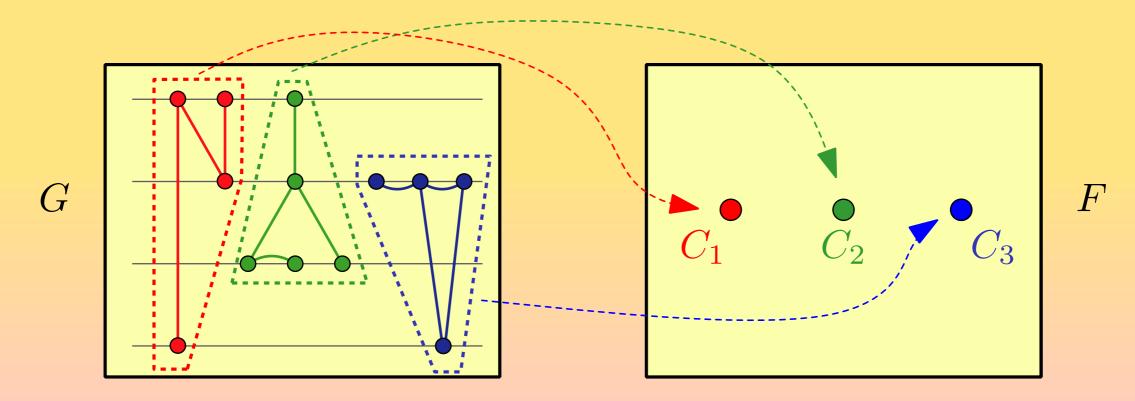




Let G = (V, E) be the graph that we want to draw.

Define the *cluster adjacency graph* F as the directed graph...

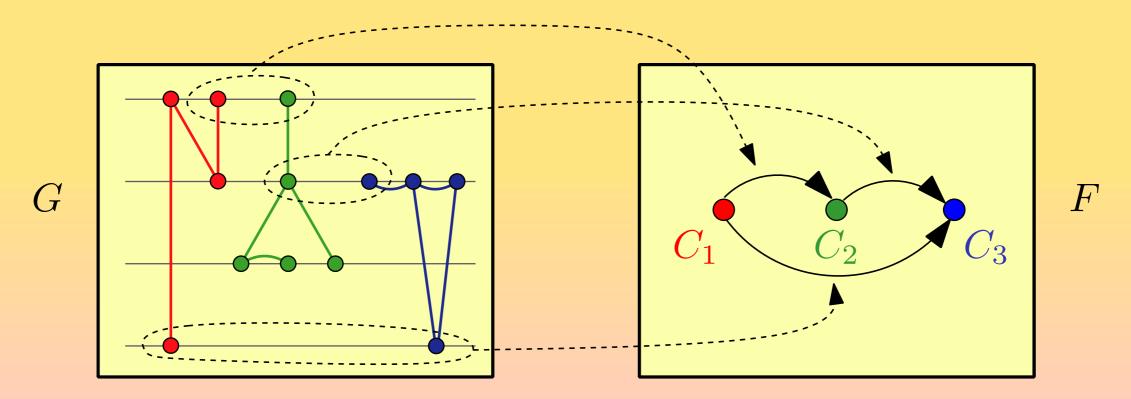
- $\bullet\,$ whose vertices correspond to clusters in G
- that has a directed edge between the cluster vertices C and C' if there
 is a level i on which a vertex of C or an edge connected to a vertex of
 C lies to the left of a vertex or edge of C'



Let G = (V, E) be the graph that we want to draw.

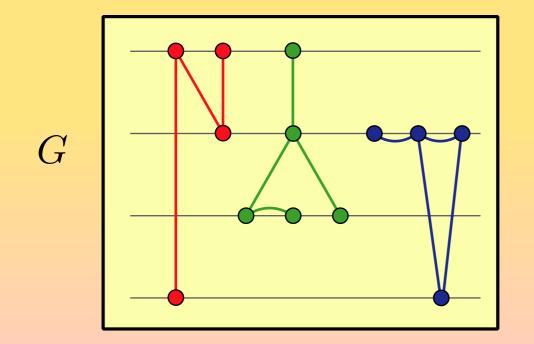
Define the *cluster adjacency graph* F as the directed graph...

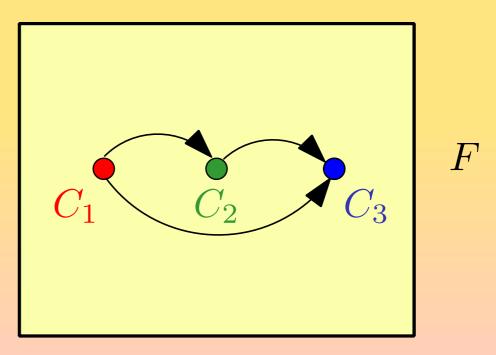
- $\bullet\,$ whose vertices correspond to clusters in G
- that has a directed edge between the cluster vertices C and C' if there
 is a level i on which a vertex of C or an edge connected to a vertex of
 C lies to the left of a vertex or edge of C'



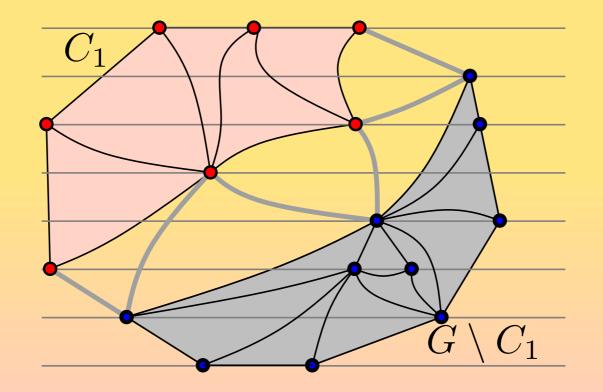
Let G = (V, E) be the graph that we want to draw.

Lemma. The *Recursive Algorithm* can be used to draw G if the *cluster adjacency graph* F is acyclic.

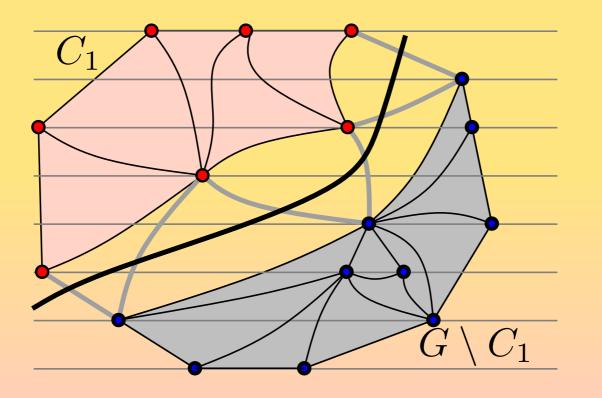




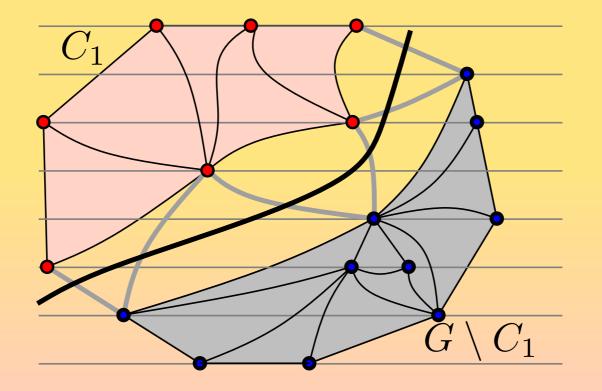
• Triangulate G in O(n) time.



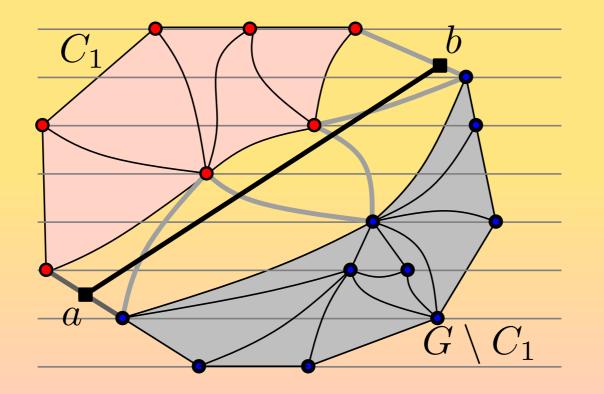
- Triangulate G in O(n) time.
- $C_1 = \text{first cluster of cluster adjacency graph } F$ (in topological order).
- Split G into graphs G₁ and G₂ induced by the vertex sets V₁ of C₁ and V₂ = V \ V₁.



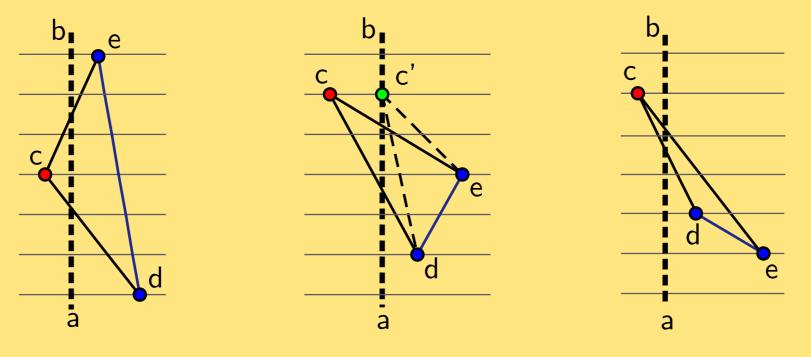
• The cut occurs through the *gray edges* between C_1 and $G \setminus C_1$ and can be computed in linear time.



- The cut occurs through the gray edges between C₁ and G \ C₁ and can be computed in linear time.
- Split the drawing of G by a straight line ab.
- Draw C_1 in linear time using the algorithm of *Eades at al.*
- Treat $G \setminus C_1$ the same way recursively.



What happens to the gray edges?

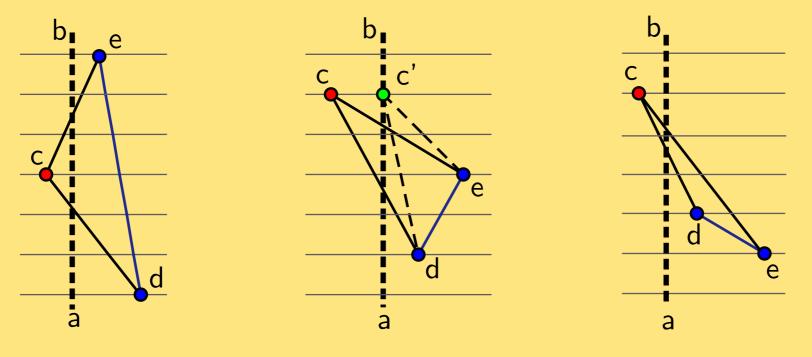


The three types how a face can be split



Recursive Algorithm: Main Concepts

What happens to the gray edges?



The three types how a face can be split

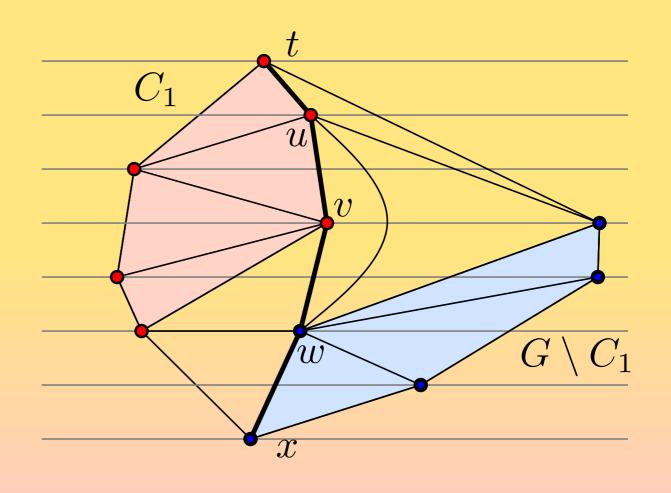
Theorem. If the cluster adjacency graph is acyclic, then a straight-line drawing with convex cluster regions can be computed in $O(n^2)$ time.

Monotone Separating Paths

Let G = (V, E) be a clustered hierarchical graph.

A path Π in G is a monotone separating path if . . .

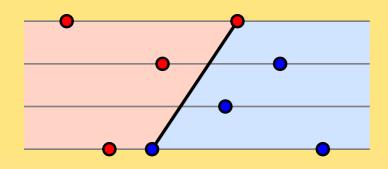
- Π is a path between two vertices on the boundary of G,
- Π is y-monotone, and
- G \ Π has two connected components G₁ and G₂ whose vertices are in different clusters



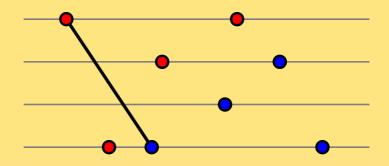
Finding a monotone separating path

In the following suppose that G has only two clusters.

Definition. An edge (u, v) is called *separating* if it separates the clusters on all layers that it spans.



separating edge

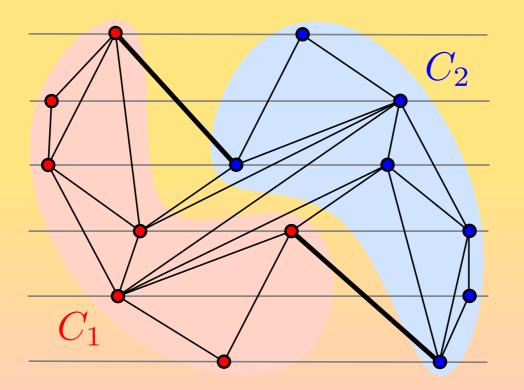


not a separating edge

Finding a monotone separating path

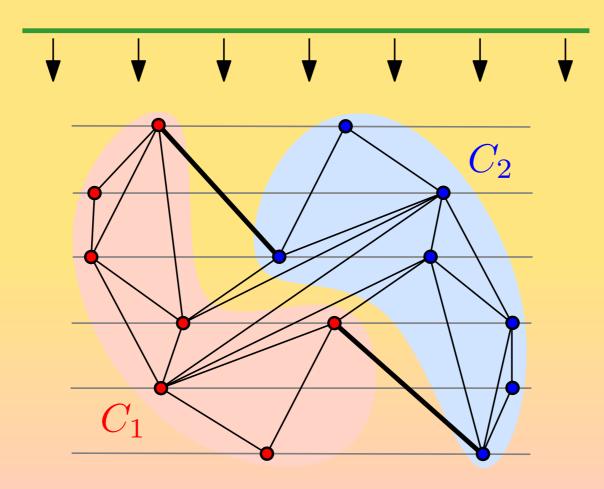
In the following suppose that G has only two clusters.

Definition. The two edges on the boundary of G whose endpoints are in different clusters are called *gates*.

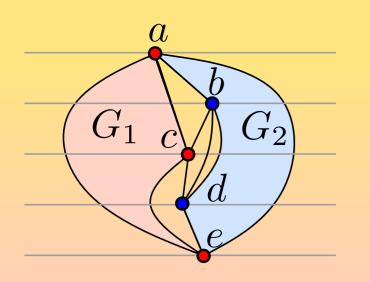


Finding a monotone separating path

- A monotone separating path connects one endpoint of the first gate with one endpoint of the second gate using only separating edges.
- It can be found in O(n) time by a line sweep.



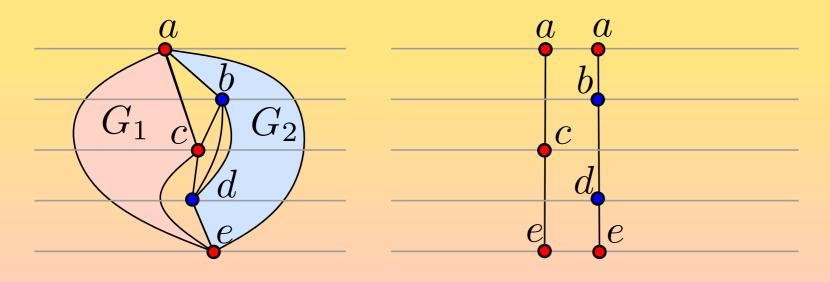
- 1. Compute *left path* and *right path* using shortcuts.
- 2. Draw *left path* and *right path* using parallel line segments.
- 3. Compute drawings of G_1 and G_2 using the algorithm of *Eades et al.*
- 4. Place the drawings of G_1 and G_2 at distance ξ from each other.
- 5. Place the remaining vertices on two arcs using distance δ .



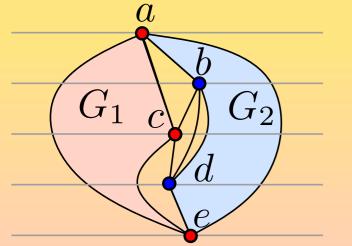
Conclusion

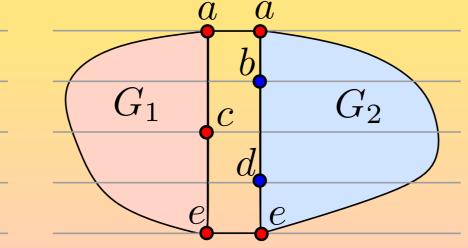
Separating-Path Algorithm

- 1. Compute *left path* and *right path* using shortcuts.
- 2. Draw *left path* and *right path* using parallel line segments.
- 3. Compute drawings of G_1 and G_2 using the algorithm of *Eades et al.*
- 4. Place the drawings of G_1 and G_2 at distance ξ from each other.
- 5. Place the remaining vertices on two arcs using distance δ .

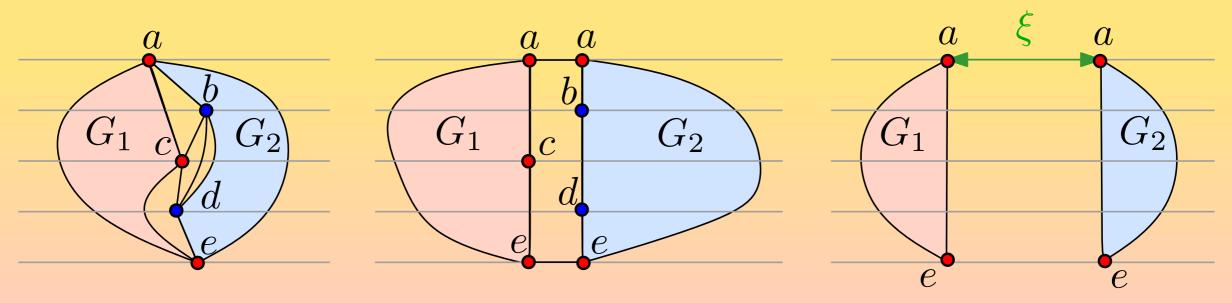


- 1. Compute *left path* and *right path* using shortcuts.
- 2. Draw *left path* and *right path* using parallel line segments.
- 3. Compute drawings of G_1 and G_2 using the algorithm of *Eades et al.*
- 4. Place the drawings of G_1 and G_2 at distance ξ from each other.
- 5. Place the remaining vertices on two arcs using distance δ .

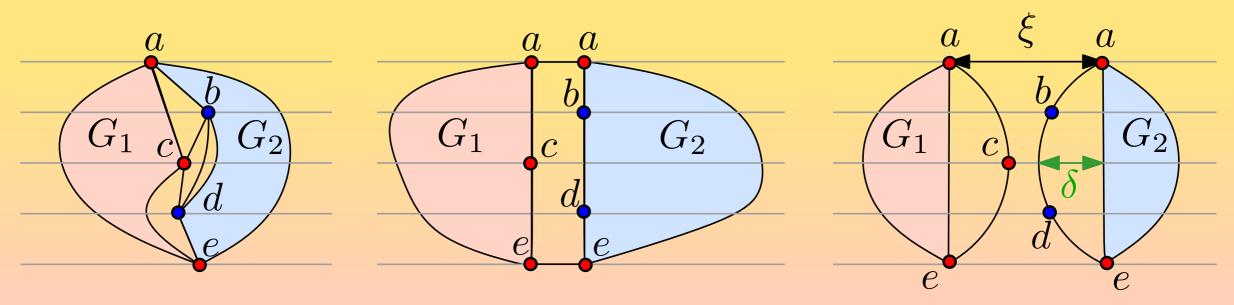




- 1. Compute *left path* and *right path* using shortcuts.
- 2. Draw *left path* and *right path* using parallel line segments.
- 3. Compute drawings of G_1 and G_2 using the algorithm of *Eades et al.*
- 4. Place the drawings of G_1 and G_2 at distance ξ from each other.
- 5. Place the remaining vertices on two arcs using distance δ .

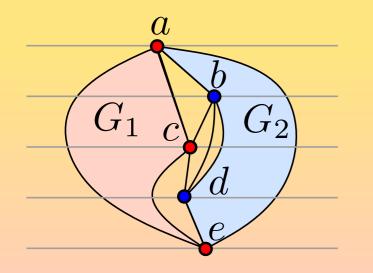


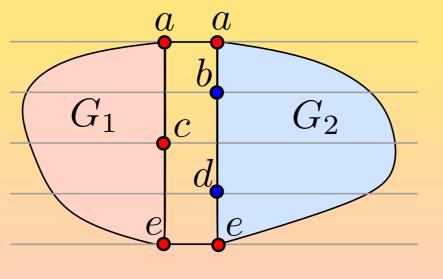
- 1. Compute *left path* and *right path* using shortcuts.
- 2. Draw *left path* and *right path* using parallel line segments.
- 3. Compute drawings of G_1 and G_2 using the algorithm of *Eades et al.*
- 4. Place the drawings of G_1 and G_2 at distance ξ from each other.
- 5. Place the remaining vertices on two arcs using distance δ .

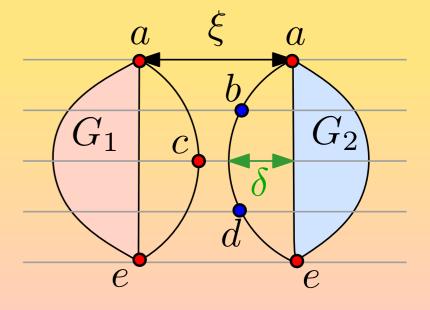


Drawing of the graph

Theorem. Given a c-planar clustered hierarchical graph G with two clusters and a monotone separating path, a straight-line drawing of G with convex cluster regions can be computed in linear time.







Conclusion

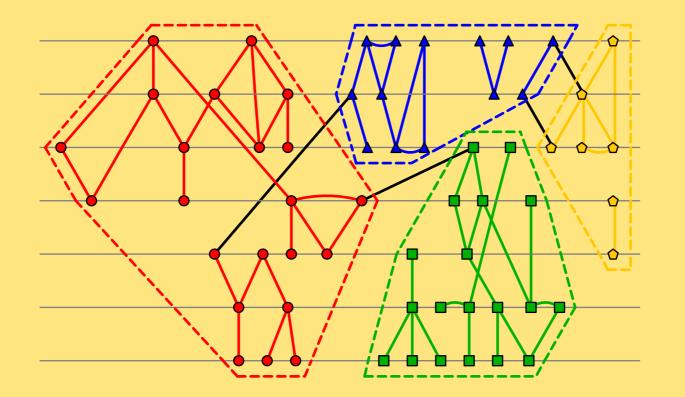
21-1

Conclusion

Three new methods to produce drawings of *clustered hierarchical graphs* with straight-line edges and non-intersecting cluster regions:

- Recursive Algorithm
 - works only if cluster adjacency graph is acyclic,
 - runs in $O(n^2)$ time.
- Separating Path Algorithm
 - only applicable if a monotone separating path exists,
 - runs in O(n) time.
- Linear Programming Formulation
 - slowest of our methods (roughly $O(n^{3.5})$ time),
 - needs only O(n) variables and O(n) constraints,
 - produces nicest results due to global optimization.

Thank you for your attention!



Do you have any questions?

Check out our Java applet at: http://i11www.ira.uka.de/clusteredgraph