
1-1

Straightening Drawings of
Clustered Hierarchical Graphs

Sergey Bereg1, Markus Völker2, Alexander Wolff3, Yuanyi Zhang1

1 Department of Computer Science, University of Texas at Dallas, U.S.A.

2 Fakultät für Informatik, Universität Karlsruhe, Germany

3 Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, the Netherlands



2-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Introduction



3-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Clustered Graphs

A clustered graph C = (G, T ) consists of

• an undirected graph G = (V,E)

• a partition of the vertex set V into clusters

Definition

Structural Information

• vertices in the same cluster are interpreted as being similar

• vertices in different clusters are interpreted as being different



4-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Hierarchical Graphs

Definition

A hierarchical graph L = (G, λ) is given by

• an undirected graph G = (V,E)

• an assignment λ : V → {1, . . . , k}
of the vertices to horizontal layers

Structural Information

• the vertex set V is partitioned by the rank of the vertices

• the rank of a vertex reflects its importance in relation to vertices of
lower or higher rank



4-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Hierarchical Graphs

Example - Organigrams

organigram of Hogeschool Limburg



5-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

A graph is compound planar (c-planar), if it admits a drawing

• without edge-crossings

• without edge-region-crossings

Compound Planar Graphs

Definition



5-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

A graph is compound planar (c-planar), if it admits a drawing

Compound Planar Graphs

Definition

• without edge-crossings

• without edge-region-crossings (region = convex hull of a cluster)



6-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Problem Definition

Input

• embedded c-planar graph G(V,E)

• disjoint clusters C1 ∪ . . . ∪ Cm = V

• layers λ : V → {1, 2, . . . , k}



6-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Problem Definition

Output

Drawing of G such that

• edges are straight-line segments,

• clusters lie in disjoint convex regions,

• no edge intersects a cluster boundary twice.



6-3

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Problem Definition



7-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Related Work

Eades, Feng, Lin, Nagamochi (2005)

• input: compound planar graph G

• output: drawing of G with

– straight edges

– convex cluster regions

• time complexity: O(n)

• disadvantage: places each vertex at a unique layer
⇒ k × k square grid will be drawn on k2 layers

For further references to related work please refer to our paper.



8-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Overview of our work

Our aim: Producing vertical compact drawings

• Two fast algorithms

– run in O(n2) and O(n) time, resp.,

– have certain preconditions.

• LP formulation

– always finds a drawing if one exists,

– produces nicer results due to global optimization,

– slower.



9-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP Formulation



10-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: variables

We add one variable to our LP formulation for the x-coordinate of each

• vertex

• edge-level-crossing



10-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: variables

v1

v2

v3 v4

v5

v6

v7

v8

We add one variable to our LP formulation for the x-coordinate of each

• vertex

• edge-level-crossing



10-3

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: variables

v1

v2

v3 v4

v5

v6

v7

v8c1

c2

c3

c4

c5 c6

We add one variable to our LP formulation for the x-coordinate of each

• vertex

• edge-level-crossing



10-4

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: variables

v1

v2

v3 v4

v5

v6

v7

v8c1

c2

c3

c4

c5 c6

We add one variable to our LP formulation for the x-coordinate of each

• vertex ⇒ O(n) variables

• edge-level-crossing ⇒ O(n) variables



11-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: constraints

u

q

v

We want . . .

• straight line edges

• preservation of the original embedding

• minimum distances between vertices and edges

• disjoint convex hulls

RelPos(q, u, v) =

∣∣∣∣∣∣
qx λ(q) 1
ux λ(u) 1
vx λ(v) 1

∣∣∣∣∣∣ != 0

For each edge (u, v) ∈ E and each crossing
q of (u, v) with a layer add constraint:

⇒ O(n) constraints



11-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: constraints

q

u

v

w

z

dmin

We want . . .

• straight line edges

• preservation of the original embedding

• minimum distances between vertices and edges

• disjoint convex hulls

For each vertex w to the right of a vertex
u add constraint:

ux + dmin ≤ wx

For each vertex z to the right of an edge-
layer crossing q add constraint:

qx + dmin ≤ zx

⇒ O(n) constraints

⇒ O(n) constraints

⇒ O(n) constraints



11-3

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: constraints

We want . . .

• straight line edges

• preservation of the original embedding

• minimum distances between vertices and edges

• disjoint convex hulls

⇒ O(n) constraints

⇒ O(n) constraints

⇒ O(n) constraints



11-4

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: constraints

C1

C2

C3

b23

t23

u

v

We want . . .

• straight line edges

• preservation of the original embedding

• minimum distances between vertices and edges

• disjoint convex hulls

• add separating line between adjoining
pairs of clusters

• maintain position in relation to the
separating line

RelPos(u, b23, t23) > 0
RelPos(v, b23, t23) < 0

⇒ O(n) constraints

⇒ O(n) constraints

⇒ O(n) constraints

⇒ O(n) constraints



11-5

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: constraints

We want . . .

• straight line edges

• preservation of the original embedding

• minimum distances between vertices and edges

• disjoint convex hulls ⇒ O(n) constraints

⇒ O(n) constraints

⇒ O(n) constraints

⇒ O(n) constraints

Lemma. Our LP uses O(n) variables and O(n) constraints.



12-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: objective function

optimize for “nice” angles

• many optimization criteria possible (angles, width, . . . )

• optimization for a good angular resolution works very well

• question: How to optimize angles using linear constraints?



12-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: objective function

α α
α α

β
β β

u

v

constant

• uniformly distribute the 180◦ angular space above and below each vertex

• for each vertex the optimal relative positions of all adjacent vertices can
be precomputed using trigonometric functions



12-3

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: objective function

δ∗uv

α α
α α

β
β β

u

v

constant

• now we can compute an optimal x-offset δ∗uv between u and v

• the actual offset δuv is given by xu − xv

• the absolute difference µuv of δuv and δ∗uv can expressed as follows:



12-4

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

LP formulation: objective function

• now we can compute an optimal x-offset δ∗uv between u and v

• the actual offset δuv is given by xu − xv

• the absolute difference µuv of δuv and δ∗uv can expressed as follows:

µuv ≥ +δ∗uv − δuv

µuv ≥ −δ∗uv + δuv

• our objective function minimizes these deviations µuv from the optimum

minimize
∑

{u,v}∈E(µuv + µvu)



13-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Recursive Algorithm



14-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Recursive Algorithm: Precondition

G F

Define the cluster adjacency graph F as the directed graph. . .

• whose vertices correspond to clusters in G

• that has a directed edge between the cluster vertices C and C ′ if there
is a level i on which a vertex of C or an edge connected to a vertex of
C lies to the left of a vertex or edge of C ′

Let G = (V,E) be the graph that we want to draw.



14-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Recursive Algorithm: Precondition

Define the cluster adjacency graph F as the directed graph. . .

• whose vertices correspond to clusters in G

• that has a directed edge between the cluster vertices C and C ′ if there
is a level i on which a vertex of C or an edge connected to a vertex of
C lies to the left of a vertex or edge of C ′

G F

Let G = (V,E) be the graph that we want to draw.

C2C1 C3



14-3

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Recursive Algorithm: Precondition

G F

Define the cluster adjacency graph F as the directed graph. . .

• whose vertices correspond to clusters in G

• that has a directed edge between the cluster vertices C and C ′ if there
is a level i on which a vertex of C or an edge connected to a vertex of
C lies to the left of a vertex or edge of C ′

C2C1 C3

Let G = (V,E) be the graph that we want to draw.



14-4

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Recursive Algorithm: Precondition

G F

Let G = (V,E) be the graph that we want to draw.

C2C1 C3

Lemma. The Recursive Algorithm can be used to draw G
if the cluster adjacency graph F is acyclic.



15-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Recursive Algorithm: Main Concepts

C1

G \ C1

• Triangulate G in O(n) time.



15-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Recursive Algorithm: Main Concepts

C1

G \ C1

• Triangulate G in O(n) time.

• C1 = first cluster of cluster adjacency graph F (in topological order).

• Split G into graphs G1 and G2

induced by the vertex sets V1 of C1 and V2 = V \ V1.



15-3

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Recursive Algorithm: Main Concepts

C1

G \ C1

• The cut occurs through the gray edges between C1 and G\C1 and can
be computed in linear time.



15-4

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Recursive Algorithm: Main Concepts

• Split the drawing of G by a straight line ab.

C1

G \ C1

• The cut occurs through the gray edges between C1 and G\C1 and can
be computed in linear time.

a

b

• Draw C1 in linear time using the algorithm of Eades at al.

• Treat G \ C1 the same way recursively.



16-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

a

b

c c’

d

e

a

b

d

e

c

c

d
e

a

b

a

b

What happens to the gray edges?

The three types how a face can be split

Recursive Algorithm: Main Concepts



16-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

a

b

c c’

d

e

a

b

d

e

c

c

d
e

a

b

What happens to the gray edges?

The three types how a face can be split

Theorem. If the cluster adjacency graph is acyclic, then a straight-line
drawing with convex cluster regions can be computed in O(n2) time.

Recursive Algorithm: Main Concepts



17-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Separating-Path Algorithm



18-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Separating-Path Algorithm

Monotone Separating Paths

A path Π in G is a monotone separating path if . . .

• Π is a path between two vertices on the boundary of G,

• Π is y-monotone, and

• G \Π has two
connected components
G1 and G2 whose vertices
are in different clusters

Let G = (V,E) be a clustered hierarchical graph.

C1

G \ C1

v

u

w

t

x



19-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Separating-Path Algorithm

Finding a monotone separating path

separating edge not a separating edge

In the following suppose that G has only two clusters.

Definition. An edge (u, v) is called separating if it separates the clusters
on all layers that it spans.



19-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Separating-Path Algorithm

Finding a monotone separating path

C1

C2

In the following suppose that G has only two clusters.

Definition. The two edges on the boundary of G whose endpoints are
in different clusters are called gates.



19-3

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Separating-Path Algorithm

Finding a monotone separating path

C1

C2

• A monotone separating path connects one endpoint of the first gate
with one endpoint of the second gate using only separating edges.

• It can be found in O(n) time by a line sweep.



20-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Drawing of the graph

Separating-Path Algorithm

a

b

c

d
e

G1 G2

1. Compute left path and right path using shortcuts.

2. Draw left path and right path using parallel line segments.

3. Compute drawings of G1 and G2 using the algorithm of Eades et al.

4. Place the drawings of G1 and G2 at distance ξ from each other.

5. Place the remaining vertices on two arcs using distance δ.



20-2

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Drawing of the graph

Separating-Path Algorithm

a

b

c

d
e

G1 G2

a

c

b

d
e

a

e

1. Compute left path and right path using shortcuts.

2. Draw left path and right path using parallel line segments.

3. Compute drawings of G1 and G2 using the algorithm of Eades et al.

4. Place the drawings of G1 and G2 at distance ξ from each other.

5. Place the remaining vertices on two arcs using distance δ.



20-3

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Drawing of the graph

Separating-Path Algorithm

a

b

c

d
e

G1 G2

a

cG1

b

d
e

G2

a

e

1. Compute left path and right path using shortcuts.

2. Draw left path and right path using parallel line segments.

3. Compute drawings of G1 and G2 using the algorithm of Eades et al.

4. Place the drawings of G1 and G2 at distance ξ from each other.

5. Place the remaining vertices on two arcs using distance δ.



20-4

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Drawing of the graph

Separating-Path Algorithm

a

b

c

d
e

G1 G2

a

cG1

b

d
e

G2

a

e

a

G1

e

G2

a

e

ξ

1. Compute left path and right path using shortcuts.

2. Draw left path and right path using parallel line segments.

3. Compute drawings of G1 and G2 using the algorithm of Eades et al.

4. Place the drawings of G1 and G2 at distance ξ from each other.

5. Place the remaining vertices on two arcs using distance δ.



20-5

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Drawing of the graph

Separating-Path Algorithm

a

b

c

d
e

G1 G2

a

cG1

b

d
e

G2

a a

cG1

b

d
e

G2

a

e
e

δ

ξ

1. Compute left path and right path using shortcuts.

2. Draw left path and right path using parallel line segments.

3. Compute drawings of G1 and G2 using the algorithm of Eades et al.

4. Place the drawings of G1 and G2 at distance ξ from each other.

5. Place the remaining vertices on two arcs using distance δ.



20-6

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Drawing of the graph

Separating-Path Algorithm

a

b

c

d
e

G1 G2

a

cG1

b

d
e

G2

a a

cG1

b

d
e

G2

a

e
e

δ

ξ

Theorem. Given a c-planar clustered hierarchical graph G with two
clusters and a monotone separating path, a straight-line drawing of G
with convex cluster regions can be computed in linear time.



21-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Conclusion



22-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Conclusion
Three new methods to produce drawings of clustered hierarchical graphs with
straight-line edges and non-intersecting cluster regions:

• Recursive Algorithm

– works only if cluster adjacency graph is acyclic,

– runs in O(n2) time.

• Separating Path Algorithm

– only applicable if a monotone separating path exists,

– runs in O(n) time.

• Linear Programming Formulation

– slowest of our methods (roughly O(n3.5) time),

– needs only O(n) variables and O(n) constraints,

– produces nicest results due to global optimization.



23-1

Recursive AlgorithmIntroduction Separating-Path AlgorithmLP formulation Conclusion

Thank you for your attention!

Check out our Java applet at: http://i11www.ira.uka.de/clusteredgraph

Do you have any questions?


