Straightening Drawings of Clustered Hierarchical Graphs

Sergey Bereg ${ }^{1}$, Markus Völker ${ }^{2}$, Alexander Wolff ${ }^{3}$, Yuanyi Zhang ${ }^{1}$
${ }^{1}$ Department of Computer Science, University of Texas at Dallas, U.S.A.
${ }^{2}$ Fakultät für Informatik, Universität Karlsruhe, Germany
${ }^{3}$ Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, the Netherlands

Clustered Graphs

Definition

A clustered graph $\mathcal{C}=(G, T)$ consists of

- an undirected graph $G=(V, E)$
- a partition of the vertex set V into clusters

Structural Information

- vertices in the same cluster are interpreted as being similar
- vertices in different clusters are interpreted as being different

Hierarchical Graphs

Definition

A hierarchical graph $\mathcal{L}=(G, \lambda)$ is given by

- an undirected graph $G=(V, E)$
- an assignment $\lambda: V \rightarrow\{1, \ldots, k\}$ of the vertices to horizontal layers

Structural Information

- the vertex set V is partitioned by the rank of the vertices
- the rank of a vertex reflects its importance in relation to vertices of lower or higher rank

Hierarchical Graphs

Example - Organigrams

organigram of Hogeschool Limburg

Compound Planar Graphs

Definition

A graph is compound planar (c-planar), if it admits a drawing

- without edge-crossings
- without edge-region-crossings

Compound Planar Graphs

Definition

A graph is compound planar (c-planar), if it admits a drawing

- without edge-crossings
- without edge-region-crossings (region $=$ convex hull of a cluster)

Problem Definition

Input

- embedded c-planar graph $G(V, E)$
- disjoint clusters $C_{1} \cup \ldots \cup C_{m}=V$
- layers $\lambda: V \rightarrow\{1,2, \ldots, k\}$

Problem Definition

Output

Drawing of G such that

- edges are straight-line segments,
- clusters lie in disjoint convex regions,
- no edge intersects a cluster boundary twice.

Problem Definition

Related Work

Eades, Feng, Lin, Nagamochi (2005)

- input: compound planar graph G
- output: drawing of G with
- straight edges
- convex cluster regions
- time complexity: $O(n)$
- disadvantage: places each vertex at a unique layer
$\Rightarrow k \times k$ square grid will be drawn on k^{2} layers

For further references to related work please refer to our paper.

Overview of our work

Our aim: Producing vertical compact drawings

- Two fast algorithms
- run in $O\left(n^{2}\right)$ and $O(n)$ time, resp.,
- have certain preconditions.
- LP formulation
- always finds a drawing if one exists,
- produces nicer results due to global optimization,
- slower.

LP Formulation

LP formulation: variables

We add one variable to our LP formulation for the x-coordinate of each

- vertex
- edge-level-crossing

LP formulation: variables

We add one variable to our LP formulation for the x-coordinate of each

- vertex
- edge-level-crossing

LP formulation: variables

We add one variable to our LP formulation for the x-coordinate of each

- vertex
- edge-level-crossing

LP formulation: variables

We add one variable to our LP formulation for the x-coordinate of each

- vertex $\Rightarrow O(n)$ variables
- edge-level-crossing $\Rightarrow O(n)$ variables

LP formulation: constraints

We want ...

- straight line edges
$\Rightarrow O(n)$ constraints
- preservation of the original embedding
- minimum distances between vertices and edges
- disjoint convex hulls

For each edge $(u, v) \in E$ and each crossing q of (u, v) with a layer add constraint:

$$
\operatorname{RelPos}(q, u, v)=\left|\begin{array}{lll}
q_{x} & \lambda(q) & 1 \\
u_{x} & \lambda(u) & 1 \\
v_{x} & \lambda(v) & 1
\end{array}\right| \stackrel{!}{=} 0
$$

LP formulation: constraints

We want ...

- straight line edges
- preservation of the original embedding
$\Rightarrow O(n)$ constraints
- minimum distances between vertices and edges $\Rightarrow O(n)$ constraints
- disjoint convex hulls

For each vertex w to the right of a vertex u add constraint:

$$
u_{x}+d_{\min } \leq w_{x}
$$

For each vertex z to the right of an edgelayer crossing q add constraint:

$$
q_{x}+d_{\min } \leq z_{x}
$$

LP formulation: constraints

We want ...

- straight line edges
- preservation of the original embedding
$\Rightarrow O(n)$ constraints
$\Rightarrow O(n)$ constraints
- minimum distances between vertices and edges $\Rightarrow O(n)$ constraints
- disjoint convex hulls

LP formulation: constraints

We want ...

- straight line edges
- preservation of the original embedding
- minimum distances between vertices and edges
- disjoint convex hulls
$\Rightarrow O(n)$ constraints
$\Rightarrow O(n)$ constraints
$\Rightarrow O(n)$ constraints
$\Rightarrow O(n)$ constraints

- add separating line between adjoining pairs of clusters
- maintain position in relation to the separating line

$$
\begin{aligned}
& \operatorname{RelPos}\left(u, b_{23}, t_{23}\right)>0 \\
& \operatorname{RelPos}\left(v, b_{23}, t_{23}\right)<0
\end{aligned}
$$

LP formulation: constraints

We want ...

- straight line edges
- preservation of the original embedding
- minimum distances between vertices and edges
- disjoint convex hulls
$\Rightarrow O(n)$ constraints
$\Rightarrow O(n)$ constraints
$\Rightarrow O(n)$ constraints
$\Rightarrow O(n)$ constraints

Lemma. Our LP uses $O(n)$ variables and $O(n)$ constraints.

LP formulation: objective function

- many optimization criteria possible (angles, width, ...)
- optimization for a good angular resolution works very well
- question: How to optimize angles using linear constraints?

optimize for "nice" angles

LP formulation: objective function

- uniformly distribute the 180° angular space above and below each vertex
- for each vertex the optimal relative positions of all adjacent vertices can be precomputed using trigonometric functions

LP formulation: objective function

- now we can compute an optimal x-offset $\delta_{u v}^{*}$ between u and v
- the actual offset $\delta_{u v}$ is given by $x_{u}-x_{v}$
- the absolute difference $\mu_{u v}$ of $\delta_{u v}$ and $\delta_{u v}^{*}$ can expressed as follows:

LP formulation: objective function

- now we can compute an optimal x-offset $\delta_{u v}^{*}$ between u and v
- the actual offset $\delta_{u v}$ is given by $x_{u}-x_{v}$
- the absolute difference $\mu_{u v}$ of $\delta_{u v}$ and $\delta_{u v}^{*}$ can expressed as follows:

$$
\begin{aligned}
& \mu_{u v} \geq+\delta_{u v}^{*}-\delta_{u v} \\
& \mu_{u v} \geq-\delta_{u v}^{*}+\delta_{u v}
\end{aligned}
$$

- our objective function minimizes these deviations $\mu_{u v}$ from the optimum

$$
\operatorname{minimize} \sum_{\{u, v\} \in E}\left(\mu_{u v}+\mu_{v u}\right)
$$

Recursive Algorithm

Recursive Algorithm: Precondition

Let $G=(V, E)$ be the graph that we want to draw.

Define the cluster adjacency graph F as the directed graph...

- whose vertices correspond to clusters in G
- that has a directed edge between the cluster vertices C and C^{\prime} if there is a level i on which a vertex of C or an edge connected to a vertex of C lies to the left of a vertex or edge of C^{\prime}

Recursive Algorithm: Precondition

Let $G=(V, E)$ be the graph that we want to draw.

Define the cluster adjacency graph F as the directed graph. . .

- whose vertices correspond to clusters in G
- that has a directed edge between the cluster vertices C and C^{\prime} if there is a level i on which a vertex of C or an edge connected to a vertex of C lies to the left of a vertex or edge of C^{\prime}

Recursive Algorithm: Precondition

Let $G=(V, E)$ be the graph that we want to draw.

Define the cluster adjacency graph F as the directed graph...

- whose vertices correspond to clusters in G
- that has a directed edge between the cluster vertices C and C^{\prime} if there is a level i on which a vertex of C or an edge connected to a vertex of C lies to the left of a vertex or edge of C^{\prime}

Recursive Algorithm: Precondition

Let $G=(V, E)$ be the graph that we want to draw.

Lemma. The Recursive Algorithm can be used to draw G if the cluster adjacency graph F is acyclic.

Recursive Algorithm: Main Concepts

- Triangulate G in $O(n)$ time.

Recursive Algorithm: Main Concepts

- Triangulate G in $O(n)$ time.
- $C_{1}=$ first cluster of cluster adjacency graph F (in topological order).
- Split G into graphs G_{1} and G_{2} induced by the vertex sets V_{1} of C_{1} and $V_{2}=V \backslash V_{1}$.

Recursive Algorithm: Main Concepts

- The cut occurs through the gray edges between C_{1} and $G \backslash C_{1}$ and can be computed in linear time.

Recursive Algorithm: Main Concepts

- The cut occurs through the gray edges between C_{1} and $G \backslash C_{1}$ and can be computed in linear time.
- Split the drawing of G by a straight line $a b$.
- Draw C_{1} in linear time using the algorithm of Eades at al.
- Treat $G \backslash C_{1}$ the same way recursively.

Recursive Algorithm: Main Concepts

What happens to the gray edges?

The three types how a face can be split

Recursive Algorithm: Main Concepts

What happens to the gray edges?

The three types how a face can be split

Theorem. If the cluster adjacency graph is acyclic, then a straight-line drawing with convex cluster regions can be computed in $O\left(n^{2}\right)$ time.

Separating-Path Algorithm

Separating-Path Algorithm

Monotone Separating Paths

Let $G=(V, E)$ be a clustered hierarchical graph.
A path Π in G is a monotone separating path if ...

- Π is a path between two vertices on the boundary of G,
- Π is y-monotone, and
- $G \backslash \Pi$ has two
connected components G_{1} and G_{2} whose vertices are in different clusters

Separating-Path Algorithm

Finding a monotone separating path

In the following suppose that G has only two clusters.

Definition. An edge (u, v) is called separating if it separates the clusters on all layers that it spans.

separating edge

not a separating edge

Separating-Path Algorithm

Finding a monotone separating path
In the following suppose that G has only two clusters.

Definition. The two edges on the boundary of G whose endpoints are in different clusters are called gates.

Separating-Path Algorithm

Finding a monotone separating path

- A monotone separating path connects one endpoint of the first gate with one endpoint of the second gate using only separating edges.
- It can be found in $O(n)$ time by a line sweep.

Separating-Path Algorithm

Drawing of the graph

1. Compute left path and right path using shortcuts.
2. Draw left path and right path using parallel line segments.
3. Compute drawings of G_{1} and G_{2} using the algorithm of Eades et al.
4. Place the drawings of G_{1} and G_{2} at distance ξ from each other.
5. Place the remaining vertices on two arcs using distance δ.

Separating-Path Algorithm

Drawing of the graph

1. Compute left path and right path using shortcuts.
2. Draw left path and right path using parallel line segments.
3. Compute drawings of G_{1} and G_{2} using the algorithm of Eades et al.
4. Place the drawings of G_{1} and G_{2} at distance ξ from each other.
5. Place the remaining vertices on two arcs using distance δ.

Separating-Path Algorithm

Drawing of the graph

1. Compute left path and right path using shortcuts.
2. Draw left path and right path using parallel line segments.
3. Compute drawings of G_{1} and G_{2} using the algorithm of Eades et al.
4. Place the drawings of G_{1} and G_{2} at distance ξ from each other.
5. Place the remaining vertices on two arcs using distance δ.

Separating-Path Algorithm

Drawing of the graph

1. Compute left path and right path using shortcuts.
2. Draw left path and right path using parallel line segments.
3. Compute drawings of G_{1} and G_{2} using the algorithm of Eades et al.
4. Place the drawings of G_{1} and G_{2} at distance ξ from each other.
5. Place the remaining vertices on two arcs using distance δ.

Separating-Path Algorithm

Drawing of the graph

1. Compute left path and right path using shortcuts.
2. Draw left path and right path using parallel line segments.
3. Compute drawings of G_{1} and G_{2} using the algorithm of Eades et al.
4. Place the drawings of G_{1} and G_{2} at distance ξ from each other.
5. Place the remaining vertices on two arcs using distance δ.

Separating-Path Algorithm

Drawing of the graph

Theorem. Given a c-planar clustered hierarchical graph G with two clusters and a monotone separating path, a straight-line drawing of G with convex cluster regions can be computed in linear time.

Conclusion

Conclusion

Three new methods to produce drawings of clustered hierarchical graphs with straight-line edges and non-intersecting cluster regions:

- Recursive Algorithm
- works only if cluster adjacency graph is acyclic,
- runs in $O\left(n^{2}\right)$ time.
- Separating Path Algorithm
- only applicable if a monotone separating path exists,
- runs in $O(n)$ time.
- Linear Programming Formulation
- slowest of our methods (roughly $O\left(n^{3.5}\right)$ time),
- needs only $O(n)$ variables and $O(n)$ constraints,
- produces nicest results due to global optimization.

Thank you for your attention!

Do you have any questions?

Check out our Java applet at: http://i11www.ira.uka.de/clusteredgraph

