Improved upper bounds for $\lambda\text{-backbone}$ colorings along matchings and stars

Bert Marchal joint work with:

Hajo Broersma,

Daniel Paulusma, A.I

A.N.M. Salman

January 23, 2007

setting

network of transmitters

- interference if they are close and broadcast on the *same* frequency
- stronger transmitters also interfere if they broadcast on *similar* frequencies

set of transmitters

problem

Assign frequency channels to the transmitters in such a way that interference is avoided and bandwidth is minimized.

setting

- network of transmitters
- interference if they are close and broadcast on the *same* frequency
- stronger transmitters also interfere if they broadcast on *similar* frequencies

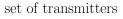
set of transmitters

problem

Assign frequency channels to the transmitters in such a way that interference is avoided and bandwidth is minimized.

setting

- network of transmitters
- interference if they are close and broadcast on the *same* frequency
- stronger transmitters also interfere if they broadcast on *similar* frequencies



problem

Assign frequency channels to the transmitters in such a way that interference is avoided and bandwidth is minimized.

setting

- network of transmitters
- interference if they are close and broadcast on the *same* frequency
- stronger transmitters also interfere if they broadcast on *similar* frequencies

set of transmitters

problem

Assign frequency channels to the transmitters in such a way that interference is avoided and bandwidth is minimized.

graph representation

• vertices of G represent transmitters

- vertices are adjacent when corresponding transmitters are

general framework

graph representation

- vertices of G represent transmitters
- vertices are adjacent when corresponding transmitters are likely to interfere
- edges between stronger transmitters that interfere when they

general framework

<ロト < 同ト < ヨト < ヨト

graph representation

- vertices of G represent transmitters
- vertices are adjacent when corresponding transmitters are likely to interfere
- edges between stronger transmitters that interfere when they broadcast on similar frequencies form a subgraph of G

general framework

• graph G_1 and subgraph G_2 of G_1

< □ > < □ > < □ > < □ > < □ > < □ >

graph representation

- vertices of G represent transmitters
- vertices are adjacent when corresponding transmitters are likely to interfere
- edges between stronger transmitters that interfere when they broadcast on similar frequencies form a subgraph of G

general framework

• graph G_1 and subgraph G_2 of G_1

• determine coloring satisfying restrictions of type 1 in G_1 and

< □ > < □ > < □ > < □ > < □ > < □ >

graph representation

- vertices of G represent transmitters
- vertices are adjacent when corresponding transmitters are likely to interfere
- edges between stronger transmitters that interfere when they broadcast on *similar* frequencies form a subgraph of G

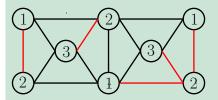
general framework

- graph G_1 and subgraph G_2 of G_1
- determine coloring satisfying restrictions of type 1 in G_1 and of type 2 in G_2 using minimum number of colors

examples

example 1

 G_2 (red edges) is a subgraph of G_1



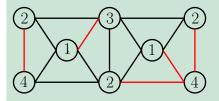
type 1: adjacent vertices have different color numbers type 2: adjacent vertices have different color numbers

examples

example 1

example 2

 G_2 (red edges) is a subgraph of G_1



type 1: adjacent vertices have different color numbers type 2: adjacent vertices have color numbers that differ by at least 2

< □ > < □ > < □ > < □ > < □ > < □ >

backbone

- backbone of network is substructure of transmitters that are more crucial than the rest
- denoted by *H* and forms a spanning subgraph of the network graph *G*

λ -backbone coloring of (G,H)

- $(\lambda, \zeta, \lambda)$ is a specific tent of the tent of tent of
- other neighbors just have different color numbers

backbone

- backbone of network is substructure of transmitters that are more crucial than the rest
- denoted by *H* and forms a spanning subgraph of the network graph *G*

λ -backbone coloring of (G,H)

- neighbors in H have color numbers that differ by at least λ
 (λ ≥ 2)
- other neighbors just have different color numbers

backbone

- backbone of network is substructure of transmitters that are more crucial than the rest
- denoted by *H* and forms a spanning subgraph of the network graph *G*

λ -backbone coloring of (G, H)

- neighbors in H have color numbers that differ by at least λ $(\lambda \ge 2)$
- other neighbors just have different color numbers

backbone

- backbone of network is substructure of transmitters that are more crucial than the rest
- denoted by *H* and forms a spanning subgraph of the network graph *G*

λ -backbone coloring of (G, H)

- neighbors in H have color numbers that differ by at least λ $(\lambda \ge 2)$
- other neighbors just have different color numbers

$BBC_{\lambda}(G,H)$

smallest number *l* for which there exists a λ-backbone
 coloring of (*G*, *H*) with color numbers 1, ..., *l*.

backbone

- backbone of network is substructure of transmitters that are more crucial than the rest
- denoted by *H* and forms a spanning subgraph of the network graph *G*

λ -backbone coloring of (G, H)

- neighbors in H have color numbers that differ by at least λ $(\lambda \ge 2)$
- other neighbors just have different color numbers

$BBC_{\lambda}(G,H)$

 smallest number *l* for which there exists a λ-backbone coloring of (G, H) with color numbers 1,..., *l*

backbone

- backbone of network is substructure of transmitters that are more crucial than the rest
- denoted by H and forms a spanning subgraph of the network graph G

λ -backbone coloring of (G, H)

- neighbors in H have color numbers that differ by at least λ $(\lambda > 2)$
- other neighbors just have different color numbers

- smallest number ℓ for which there exists a λ -backbone

backbone

- backbone of network is substructure of transmitters that are more crucial than the rest
- denoted by H and forms a spanning subgraph of the network graph G

λ -backbone coloring of (G, H)

- neighbors in H have color numbers that differ by at least λ $(\lambda > 2)$
- other neighbors just have different color numbers

- smallest number ℓ for which there exists a λ -backbone coloring of (G, H) with color numbers $1, \ldots, \ell$
- upper bounds in terms of $\chi(G)$

backbone

- backbone of network is substructure of transmitters that are more crucial than the rest
- denoted by H and forms a spanning subgraph of the network graph G

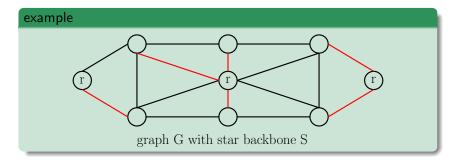
λ -backbone coloring of (G, H)

- neighbors in H have color numbers that differ by at least λ $(\lambda > 2)$
- other neighbors just have different color numbers

- smallest number ℓ for which there exists a λ -backbone coloring of (G, H) with color numbers $1, \ldots, \ell$
- upper bounds in terms of $\chi(G)$

star backbones

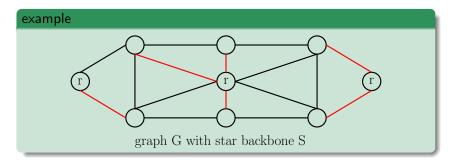
- star S_q is complete 2-partite graph with root r and q leaves
- star backbone is spanning collection of pairwise disjoint stars



• application: e.g. sensor networks

star backbones

- star S_q is complete 2-partite graph with root r and q leaves
- star backbone is spanning collection of pairwise disjoint stars

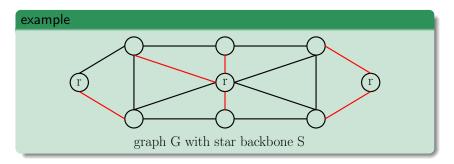


• application: e.g. sensor networks

□▶ 《注》 《注》

star backbones

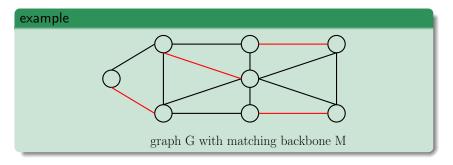
- star S_q is complete 2-partite graph with root r and q leaves
- star backbone is spanning collection of pairwise disjoint stars



• application: e.g. sensor networks

matching backbones

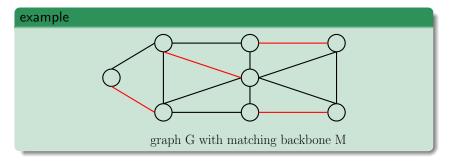
• matching backbone is spanning collection of pairwise disjoint copies of S_1



• application: e.g. military scenarios

matching backbones

• matching backbone is spanning collection of pairwise disjoint copies of S_1



• application: e.g. military scenarios

Broersma et al. (2004)

• ub for $BBC_{\lambda}(G, M)$ roughly grow like $(2 - \frac{1}{\lambda})\chi(G)$

- ub for $BBC_{\lambda}(G, S)$ roughly grow like $(2 \frac{2}{\lambda+1})\chi(G)$
- multiplicative factor (bad!)

Broersma, Fomin, Golovach and Woeginger (2003)

 for split graphs G and tree backbones T, BBC₂(G, T) ≤ χ(G) + 2

additive constant (depending on $\lambda)$ in split graphs ?

<ロト < 同ト < ヨト < ヨト

Broersma et al. (2004)

- ub for $BBC_{\lambda}(G, M)$ roughly grow like $(2 \frac{1}{\lambda})\chi(G)$
- ub for $BBC_{\lambda}(G,S)$ roughly grow like $(2-\frac{2}{\lambda+1})\chi(G)$
- multiplicative factor (bad!)

Broersma, Fomin, Golovach and Woeginger (2003)

• for split graphs G and tree backbones T, $BBC_2(G,T) \le \chi(G) + 2$

additive constant (depending on $\lambda)$ in split graphs ?

イロト イポト イヨト イヨト

Broersma et al. (2004)

- ub for $BBC_{\lambda}(G, M)$ roughly grow like $(2 \frac{1}{\lambda})\chi(G)$
- ub for $BBC_{\lambda}(G,S)$ roughly grow like $(2-\frac{2}{\lambda+1})\chi(G)$
- multiplicative factor (bad!)

Broersma, Fomin, Golovach and Woeginger (2003)

• for split graphs G and tree backbones T, $BBC_2(G,T) \le \chi(G) + 2$

idea

additive constant (depending on λ) in split graphs ?

<ロト < 同ト < ヨト < ヨト

Broersma et al. (2004)

- ub for $BBC_{\lambda}(G, M)$ roughly grow like $(2 \frac{1}{\lambda})\chi(G)$
- ub for $BBC_{\lambda}(G,S)$ roughly grow like $(2-\frac{2}{\lambda+1})\chi(G)$
- multiplicative factor (bad!)

Broersma, Fomin, Golovach and Woeginger (2003)

• for *split graphs* G and tree backbones T, $BBC_2(G, T) \le \chi(G) + 2$

idea

additive constant (depending on λ) in split graphs ?

<ロト < 同ト < ヨト < ヨト

Broersma et al. (2004)

- ub for $BBC_{\lambda}(G, M)$ roughly grow like $(2 \frac{1}{\lambda})\chi(G)$
- ub for $BBC_{\lambda}(G,S)$ roughly grow like $(2-\frac{2}{\lambda+1})\chi(G)$
- multiplicative factor (bad!)

Broersma, Fomin, Golovach and Woeginger (2003)

• for split graphs G and tree backbones T, BBC₂(G, T) $\leq \chi(G) + 2$

idea

additive constant (depending on λ) in split graphs ?

<ロト <同ト < 国ト < 国ト

Broersma et al. (2004)

- ub for $BBC_{\lambda}(G, M)$ roughly grow like $(2 \frac{1}{\lambda})\chi(G)$
- ub for $BBC_{\lambda}(G,S)$ roughly grow like $(2-\frac{2}{\lambda+1})\chi(G)$
- multiplicative factor (bad!)

Broersma, Fomin, Golovach and Woeginger (2003)

• for split graphs G and tree backbones T, $BBC_2(G, T) \le \chi(G) + 2$

idea

additive constant (depending on λ) in split graphs ?

イロト イポト イヨト イヨト

definition

A split graph is a graph whose vertex set can be partitioned into a *clique* and an *independent set* with possibly edges in between.

motivation

- Inice structural properties
- every graph can be turned into a split graph

application:

- 4 同 1 - 4 三 1 - 4 三 1

definition

A split graph is a graph whose vertex set can be partitioned into a *clique* and an *independent set* with possibly edges in between.

motivation

- nice structural properties
- every graph can be turned into a split graph

application:

* 同 ト * 三 ト *

definition

A split graph is a graph whose vertex set can be partitioned into a *clique* and an *independent set* with possibly edges in between.

motivation

- nice structural properties
- every graph can be turned into a split graph

application:

- consider sensor network with weak sensors (heat, smoke) and strong sensors (PC's, Laptops)
- weak sensors do not interfere with one anothe
- (口)(利)(三)(言)

definition

A split graph is a graph whose vertex set can be partitioned into a *clique* and an *independent set* with possibly edges in between.

motivation

- nice structural properties
- every graph can be turned into a split graph

application:

- consider sensor network with weak sensors (heat, smoke) and strong sensors (PC's, Laptops)
- weak sensors do not interfere with one another
- (日)(令)(三)(1)

definition

A split graph is a graph whose vertex set can be partitioned into a *clique* and an *independent set* with possibly edges in between.

motivation

- nice structural properties
- every graph can be turned into a split graph

application:

- consider sensor network with weak sensors (heat, smoke) and strong sensors (PC's, Laptops)
- weak sensors do not interfere with one another
- strong sensors interfere with one another and with weak sensors in their vicinity

split graphs

definition

A split graph is a graph whose vertex set can be partitioned into a *clique* and an *independent set* with possibly edges in between.

motivation

- nice structural properties
- every graph can be turned into a split graph

application:

- consider sensor network with weak sensors (heat, smoke) and strong sensors (PC's, Laptops)
- weak sensors do not interfere with one another
- strong sensors interfere with one another and with weak sensors in their vicinity

split graphs

definition

A split graph is a graph whose vertex set can be partitioned into a *clique* and an *independent set* with possibly edges in between.

motivation

- nice structural properties
- every graph can be turned into a split graph

application:

- consider sensor network with weak sensors (heat, smoke) and strong sensors (PC's, Laptops)
- weak sensors do not interfere with one another
- strong sensors interfere with one another and with weak sensors in their vicinity

split graphs

definition

A split graph is a graph whose vertex set can be partitioned into a *clique* and an *independent set* with possibly edges in between.

motivation

- nice structural properties
- every graph can be turned into a split graph

application:

- consider sensor network with weak sensors (heat, smoke) and strong sensors (PC's, Laptops)
- weak sensors do not interfere with one another
- strong sensors interfere with one another and with weak sensors in their vicinity

upper bounds on $BBC_{\lambda}(G, S)$

Theorem

Let $\lambda \ge 2$ and let G be a split graph with $\chi(G) = k \ge 2$. For every star backbone S of G,

 $BBC_{\lambda}(G,S) \leq \begin{cases} k+\lambda & \text{if } k=3 \text{ and } \lambda \geq 2 \text{ or } k \geq 4, \ \lambda=2 \\ k+\lambda-1 & \text{in the other cases.} \end{cases}$

The bounds are tight.

 \Rightarrow additive constant depending on λ

example

split graph G and star backbone S with $\chi(G)=5$ and $\lambda=2$ \Rightarrow $BBC_2(G,S)\leq 7$

<ロト <同ト < 三ト < 三ト

upper bounds on $BBC_{\lambda}(G, S)$

Theorem

Let $\lambda \ge 2$ and let G be a split graph with $\chi(G) = k \ge 2$. For every star backbone S of G,

 $BBC_{\lambda}(G,S) \leq \begin{cases} k+\lambda & \text{if } k=3 \text{ and } \lambda \geq 2 \text{ or } k \geq 4, \ \lambda=2 \\ k+\lambda-1 & \text{in the other cases.} \end{cases}$

The bounds are tight.

 \Rightarrow additive constant depending on λ

example

split graph G and star backbone S with $\chi(G)=5$ and $\lambda=2=BBC_2(G,S)\leq 7$

<ロト <同ト < 三ト < 三ト

upper bounds on $BBC_{\lambda}(G, S)$

Theorem

Let $\lambda \geq 2$ and let G be a split graph with $\chi(G) = k \geq 2$. For every star backbone S of G.

 $BBC_{\lambda}(G,S) \leq \begin{cases} k+\lambda & \text{if } k=3 \text{ and } \lambda \geq 2 \text{ or } k \geq 4, \ \lambda=2 \\ k+\lambda-1 & \text{in the other cases.} \end{cases}$

The bounds are tight.

 \Rightarrow additive constant depending on λ

example

split graph G and star backbone S with $\chi(G) = 5$ and $\lambda = 2 \Rightarrow$ $BBC_2(G,S) < 7$

イロト イポト イヨト イヨト

upper bounds on $BBC_{\lambda}(G, M)$

Theorem

Let $\lambda \ge 2$ and let G be a split graph with $\chi(G) = k \ge 2$. For every matching backbone M of G, it holds that $BBC_{\lambda}(G, M) \le 1$

$$\begin{cases} \lambda+1 & \text{if } k=2 & (i)\\ k+1 & \text{if } k \ge 4 \text{ and } \lambda \le \min\{\frac{k}{2}, \frac{k+5}{3}\} & (ii)\\ k+2 & \text{if } k=9 \text{ or } k \ge 11 \text{ and } \frac{k+6}{3} \le \lambda \le \lceil \frac{k}{2} \rceil & (iii)\\ \lceil \frac{k}{2} \rceil + \lambda & \text{if } k=3,5,7 \text{ and } \lambda \ge \lceil \frac{k}{2} \rceil & (iv)\\ \lceil \frac{k}{2} \rceil + \lambda + 1 & \text{if } k=4,6 \text{ or } k \ge 8 \text{ and } \lambda \ge \lceil \frac{k}{2} \rceil + 1. & (v) \end{cases}$$

The bounds are tight.

 \Rightarrow additive constant again!

▲ 同 ▶ ▲ 国 ▶ ▲

upper bounds on $BBC_{\lambda}(G, M)$

Theorem

Let $\lambda \geq 2$ and let G be a split graph with $\chi(G) = k \geq 2$. For every matching backbone M of G, it holds that $BBC_{\lambda}(G, M) \leq$

$$\begin{cases} \lambda+1 & \text{if } k=2 & (i)\\ k+1 & \text{if } k \ge 4 \text{ and } \lambda \le \min\{\frac{k}{2}, \frac{k+5}{3}\} & (ii)\\ k+2 & \text{if } k=9 \text{ or } k \ge 11 \text{ and } \frac{k+6}{3} \le \lambda \le \lceil \frac{k}{2} \rceil & (iii)\\ \lceil \frac{k}{2} \rceil + \lambda & \text{if } k=3,5,7 \text{ and } \lambda \ge \lceil \frac{k}{2} \rceil & (iv)\\ \lceil \frac{k}{2} \rceil + \lambda + 1 & \text{if } k=4,6 \text{ or } k \ge 8 \text{ and } \lambda \ge \lceil \frac{k}{2} \rceil + 1. & (v) \end{cases}$$

The bounds are tight.

 \Rightarrow additive constant again!

previous results:

• for any graph G with matching or star backbone • upper bounds are roughly a factor times $\chi(G)$

new results:

< 同 ▶ < 三 ▶

previous results:

- for any graph G with matching or star backbone
- upper bounds are roughly a factor times $\chi(G)$

new results:

- for split graphs G with matching or star backbone

previous results:

- for any graph G with matching or star backbone
- upper bounds are roughly a factor times $\chi(G)$

new results:

- for split graphs G with matching or star backbone
- upper bounds are additive constant away from $\chi(G)$

・ 同・ ・ ヨ・

previous results:

- for any graph G with matching or star backbone
- upper bounds are roughly a factor times $\chi(G)$

new results:

- for split graphs G with matching or star backbone
- upper bounds are additive constant away from $\chi(G)$

previous results:

- for any graph G with matching or star backbone
- upper bounds are roughly a factor times $\chi(G)$

new results:

- for split graphs G with matching or star backbone
- upper bounds are additive constant away from $\chi(G)$

- 4 同下 - 4 同下

previous results:

- for any graph G with matching or star backbone
- upper bounds are roughly a factor times $\chi(G)$

new results:

- for split graphs G with matching or star backbone
- upper bounds are additive constant away from $\chi(G)$

When are the new bounds better?

for split graphs

• for large classes of non-split graphs as well, e.g. graphs with

- (日) - (日) - (日)

previous results:

- for any graph G with matching or star backbone
- upper bounds are roughly a factor times $\chi(G)$

new results:

- for split graphs G with matching or star backbone
- upper bounds are additive constant away from $\chi(G)$

When are the new bounds better?

- for split graphs
- for large classes of non-split graphs as well, e.g. graphs with $|V(G)| - \alpha(G) < 2\omega(G)$

• consider split graph G = (V, E) with matching backbone M

- partition V in a largest clique C and an independent set I
- let nn(v) denote the set of non-neighbors of vertex v
- let mn(v) denote the unique matching neighbor of vertex v

definition

A splitting set *S* is a subset of *I* such that $\bigcup_{v \in S} nn(v)$ does not intersect with $\bigcup_{v \in S} mn(v)$.

- 4 同 1 - 4 日 1 - 4 日

- consider split graph G = (V, E) with matching backbone M
- partition V in a largest clique C and an independent set I
- let nn(v) denote the set of non-neighbors of vertex v
- let mn(v) denote the unique matching neighbor of vertex v

definition

A splitting set S is a subset of I such that $\bigcup_{v \in S} nn(v)$ does not intersect with $\bigcup_{v \in S} mn(v)$.

< □ > < □ > < □

- consider split graph G = (V, E) with matching backbone M
- partition V in a largest clique C and an independent set I
- let nn(v) denote the set of non-neighbors of vertex v
- let mn(v) denote the unique matching neighbor of vertex v

definition

A splitting set S is a subset of I such that $\bigcup_{v \in S} nn(v)$ does not intersect with $\bigcup_{v \in S} mn(v)$.

- (日) - (日) - (日)

- consider split graph G = (V, E) with matching backbone M
- partition V in a largest clique C and an independent set I
- let nn(v) denote the set of non-neighbors of vertex v
- let mn(v) denote the unique matching neighbor of vertex v

definition

A splitting set S is a subset of I such that $\bigcup_{v \in S} nn(v)$ does not intersect with $\bigcup_{v \in S} mn(v)$.

- 4 同 1 - 4 回 1 - 4 回 1

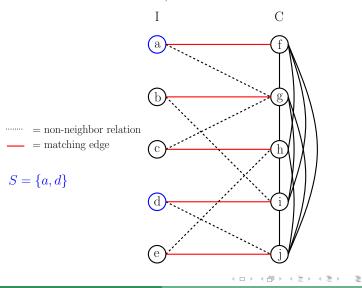
- consider split graph G = (V, E) with matching backbone M
- partition V in a largest clique C and an independent set I
- let nn(v) denote the set of non-neighbors of vertex v
- let mn(v) denote the unique matching neighbor of vertex v

definition

A splitting set S is a subset of I such that $\bigcup_{v \in S} nn(v)$ does not intersect with $\bigcup_{v \in S} mn(v)$.

- 4 同 ト - 4 同 ト

example splitting set



splitting set lemma

Lemma

Given (G, M), let $k = \omega(G) = |C|$ and let i = |I|. If every vertex in I has exactly one non-neighbor in C and $\lceil \frac{k}{3} \rceil \ge p$, then (G, M) has a splitting set S with $|S| = p - \frac{k-i}{2}$ such that there are no matching edges between elements of the set of non-neighbors of vertices of S.

constructive proof!

- 4 周 ト 4 月 ト 4 月 ト

splitting set lemma

Lemma

Given (G, M), let $k = \omega(G) = |C|$ and let i = |I|. If every vertex in I has exactly one non-neighbor in C and $\lceil \frac{k}{3} \rceil \ge p$, then (G, M) has a splitting set S with $|S| = p - \frac{k-i}{2}$ such that there are no matching edges between elements of the set of non-neighbors of vertices of S.

constructive proof!

* 同 ト * 三 ト *

Splitting Set Demonstration

matching case: k = 10, $\lambda = 5$

Thm: $BBC_5(G, M) \le 11$ Lemma: $S = \{a, f\}$

partition of C:

 C_1 : mn in C, nn in S

 C_2 : mn in I, nn in S

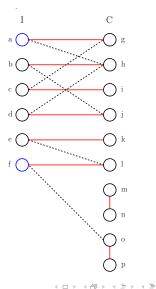
 $C_3:$ one ev of each me in C that has no ev in C_1

 $C_4:\mathrm{mn}$ in I, no mn or nn in S

 C_5 : mn in S

 C_6 : not in C_1 or C_3 ,mn in C

coloring algorithm:



200

Splitting Set Demonstration

matching case: k = 10, $\lambda = 5$

Thm: $BBC_5(G, M) \le 11$ Lemma: $S = \{a, f\}$

partition of C:

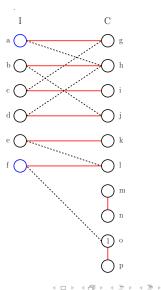
 $\begin{array}{l} C_1 \colon \mathrm{mn} \mbox{ in } \mathbf{C}, \mbox{ mn in } \mathbf{S} \\ C_2 \colon \mathrm{mn} \mbox{ in } \mathbf{I}, \mbox{ nn in } \mathbf{S} \\ C_3 \colon \mathrm{one} \mbox{ ev of each me in } \mathbf{C} \\ \mbox{ that has no ev in } C_1 \\ C_4 \colon \mathrm{mn in } \mathbf{I}, \mbox{ no mn or nn in } \mathbf{S} \end{array}$

 C_5 : mn in S

 C_6 : not in C_1 or C_3 ,mn in C

coloring algorithm:

1. $C_1 = \{o\}$ color with 1



matching case: k = 10, $\lambda = 5$

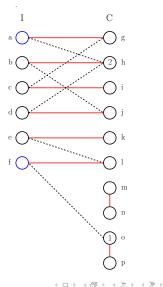
Thm: $BBC_5(G, M) \le 11$ Lemma: $S = \{a, f\}$

partition of C:

 $\begin{array}{l} C_1 : {\rm mn \ in \ C}, {\rm nn \ in \ S} \\ C_2 : {\rm mn \ in \ I}, {\rm mn \ in \ S} \\ C_3 : {\rm one \ ev \ of \ each \ me \ in \ C} \\ {\rm that \ has \ no \ ev \ mC_1} \\ C_4 : {\rm mn \ in \ I}, {\rm no \ mn \ or \ nn \ in \ S} \\ C_5 : {\rm mn \ in \ S} \\ C_6 : {\rm not \ in \ C_1 \ or \ C_3, {\rm mn \ in \ C}} \end{array}$

coloring algorithm:

- $1. \quad C_1 = \{o\} \quad \text{color with } 1$
- 2. $C_2 = \{h\}$ color with 2



Splitting Set Demonstration

matching case: k = 10, $\lambda = 5$

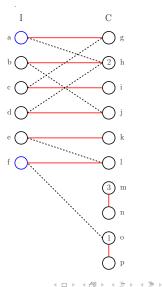
Thm: $BBC_5(G, M) \le 11$ Lemma: $S = \{a, f\}$

partition of C:

 $\begin{array}{l} C_1 : {\rm mn \ in \ C}, {\rm nn \ in \ S} \\ C_2 : {\rm mn \ in \ I}, {\rm nn \ in \ S} \\ C_3 : {\rm one \ ev \ of \ each \ me \ in \ C} \\ {\rm that \ has \ no \ ev \ nC_1} \\ C_4 : {\rm mn \ in \ I}, {\rm no \ mn \ or \ nn \ in \ S} \\ C_5 : {\rm mn \ in \ S} \\ C_6 : {\rm not \ in \ C_1 \ or \ C_3, mn \ in \ C} \end{array}$

coloring algorithm:

- $1. \quad C_1 = \{o\} \quad \text{color with } 1$
- 2. $C_2 = \{h\}$ color with 2
- 3. $C_3 = \{m\}$ color with 3



Splitting Set Demonstration

matching case: k = 10, $\lambda = 5$

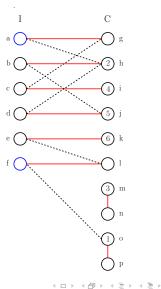
Thm: $BBC_5(G, M) \le 11$ Lemma: $S = \{a, f\}$

partition of C:

 $\begin{array}{l} C_1 : {\rm mn \ in \ C, \ nn \ in \ S} \\ C_2 : {\rm mn \ in \ I, \ nn \ in \ S} \\ C_3 : {\rm one \ ev \ of \ each \ me \ in \ C} \\ {\rm that \ has \ no \ ev \ nC_1} \\ C_4 : {\rm mn \ in \ I, \ no \ mn \ or \ nn \ in \ S} \\ C_5 : {\rm mn \ in \ S} \\ C_6 : {\rm not \ in \ C_1 \ or \ C_3, mn \ in \ C} \end{array}$

coloring algorithm:

- 1. $C_1 = \{o\}$ color with 1
- 2. $C_2 = \{h\}$ color with 2
- 3. $C_3 = \{m\}$ color with 3
- 4. $C_4 = \{i, j, k\}$, color with 4, 5 and 6



24C

Splitting Set Demonstration

matching case: k = 10, $\lambda = 5$

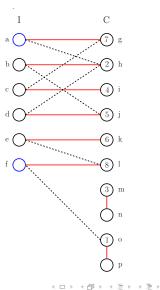
Thm: $BBC_5(G, M) \le 11$ Lemma: $S = \{a, f\}$

partition of C:

 $\begin{array}{l} C_1 : {\rm mn \ in \ C, \ nn \ in \ S} \\ C_2 : {\rm mn \ in \ I, \ nn \ in \ S} \\ C_3 : {\rm one \ ev \ of \ each \ me \ in \ C} \\ {\rm that \ has \ no \ ev \ nC_1} \\ C_4 : {\rm mn \ in \ I, \ no \ mn \ or \ nn \ in \ S} \\ C_5 : {\rm mn \ in \ S} \\ C_6 : {\rm not \ in \ C_1 \ or \ C_3, mn \ in \ C} \end{array}$

coloring algorithm:

- $\begin{array}{ll} 1. & C_1 = \{o\} \mbox{ color with } 1 \\ 2. & C_2 = \{h\} \mbox{ color with } 2 \\ 3. & C_3 = \{m\} \mbox{ color with } 3 \\ 4. & C_4 = \{i,j,k\}, \mbox{ color with } 4,5 \mbox{ and } 6 \end{array}$
- 5. $C_5 = \{g, l\}$, color with 7 and 8



Splitting Set Demonstration

matching case: k = 10, $\lambda = 5$

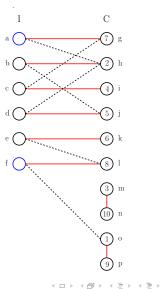
Thm: $BBC_5(G, M) \le 11$ Lemma: $S = \{a, f\}$

partition of C:

 $\begin{array}{l} C_1 : {\rm mn \ in \ C, \ nn \ in \ S} \\ C_2 : {\rm mn \ in \ I, \ nn \ in \ S} \\ C_3 : {\rm one \ ev \ of \ each \ me \ in \ C} \\ {\rm that \ has \ no \ ev \ nC_1} \\ C_4 : {\rm mn \ in \ I, \ no \ mn \ or \ nn \ in \ S} \\ C_5 : {\rm mn \ in \ S} \\ C_6 : {\rm not \ in \ C_1 \ or \ C_3, mn \ in \ C} \end{array}$

coloring algorithm:

- $\begin{array}{ll} 1. & C_1 = \{o\} \ \mbox{color with 1} \\ 2. & C_2 = \{h\} \ \mbox{color with 2} \\ 3. & C_3 = \{m\} \ \mbox{color with 3} \\ 4. & C_4 = \{i,j,k\}, \ \mbox{color with 4, 5 and 6} \\ 5. & C_5 = \{g,l\}, \ \mbox{color with 7 and 8} \\ \end{array}$
- 6. $C_6 = \{n, p\}$, color with 9 and 10



matching case: k = 10, $\lambda = 5$

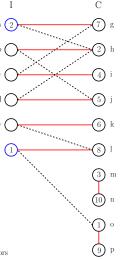
Thm: $BBC_5(G, M) \le 11$ Lemma: $S = \{a, f\}$

partition of C:

 $\begin{array}{l} C_1 : {\rm mn \ in \ C}, {\rm nn \ in \ S} \\ C_2 : {\rm mn \ in \ I}, {\rm nn \ in \ S} \\ C_3 : {\rm one \ ev \ of \ each \ me \ in \ C} \\ {\rm that \ has \ no \ ev \ in \ C_1} \\ C_4 : {\rm nn \ in \ I}, {\rm no \ mn \ or \ nn \ in \ S} \\ C_5 : {\rm mn \ in \ S} \\ C_6 : {\rm not \ in \ C_1 \ or \ C_3, mn \ in \ C} \end{array}$

coloring algorithm:

- 7. color S by assigning same color as non-neighbors



3

► < E > < E >

< 戶

matching case: k = 10, $\lambda = 5$

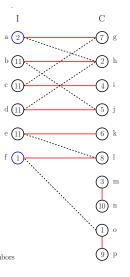
Thm: $BBC_5(G, M) \le 11$ Lemma: $S = \{a, f\}$

partition of C:

 $\begin{array}{l} C_1\colon \mathrm{mn} \mbox{ in } \mathrm{C}, \mbox{ nn } \mathrm{in } \mathrm{S} \\ C_2\colon \mathrm{mn} \mbox{ in } \mathrm{I}, \mbox{ nn } \mathrm{in } \mathrm{S} \\ C_3\colon \mathrm{one} \mbox{ vol } \mathrm{each} \mbox{ me in } \mathrm{C} \\ \mathrm{that} \mbox{ has no } \mathrm{vin} \mbox{ } \mathrm{C}_1 \\ C_4\colon \mathrm{mn } \mathrm{in } \mathrm{I}, \mbox{ no m } \mathrm{or } \mathrm{nn } \mathrm{in } \mathrm{S} \\ C_5\colon \mathrm{mn } \mathrm{in } \mathrm{S} \\ C_6\colon \mathrm{not} \mbox{ in } C_3.\mathrm{mn } \mathrm{in } \mathrm{C} \end{array}$

coloring algorithm:

- C₁ = {o} color with 1
 C₂ = {h} color with 2
 C₃ = {m} color with 3
 C₄ = {i, j, k}, color with 4, 5 and 6
 C₅ = {g, l}, color with 7 and 8
 C₆ = {n, p}, color with 9 and 10
 color S by assigning same color as non-neighbors
- 8. color rest of I with 11



< □ > < 同 > < 三 >

directions for further research

- obtain good upper bounds on $BBC_{\lambda}(G, T)$, where G is a split graph and T is a tree.
- obtain good upper bounds on BBC_λ(G, H) for general G and H.

< 同 > < 三 > < 三 >

directions for further research

- obtain good upper bounds on $BBC_{\lambda}(G, T)$, where G is a split graph and T is a tree.
- obtain good upper bounds on $BBC_{\lambda}(G, H)$ for general G and H.

