Estimates of Data Complexity in Neural Network Learning

Věra Kůrková
Institute of Computer Science Academy of Sciences of the Czech Republic Prague

vera@cs.cas.cz

Learning $=$ optimization problem

minimize Φ over M
$\operatorname{span}_{n} G=$ linear combinations of n functions corresponding to the type of computational units
expected error functional \mathcal{E}_{ρ} empirical error functional \mathcal{E}_{z}

Functional defined by a sample of data

$$
z=\left\{\left(u_{i}, v_{i}\right): i=1, \ldots, m\right\} \subseteq \mathbb{R}^{d} \times \mathbb{R} \quad \text { sample of data }
$$

Empirical error functional

$$
\mathcal{E}_{z}(f)=\frac{1}{m} \sum_{i=1}^{m}\left(f\left(u_{i}\right)-v_{i}\right)^{2}
$$

Minimization of empirical error functional $=$ the least square method Gauss 1809, Legendre 1806

Functional defined by a probability measure
$\rho=$ nondegenerate (no nonempty open set has measure zero) probability measure on $Z=X \times Y \quad \rho(Z)=1$
$X \subset \mathbb{R}^{d}$ compact $\quad Y \subset \mathbb{R}$ bounded

Expected error functional

$$
\mathcal{E}_{\rho}(f)=\int_{X \times Y}(f(u)-v)^{2} d \rho
$$

The least square method: statistical inference, pattern recognition, function approximation, curve or surface fitting, etc.
the best fitting function was searched for in
LINEAR hypothesis spaces
\Rightarrow limitations on applications to high-dimensional data!

CURSE OF DIMENSIONALITY

the dimension of a linear space needed for approximation of a function of d variables within accuracy ε is
$\mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{d}\right)$
\Rightarrow complexity of LINEAR models grows EXPONENTIALLY with the data dimension d

Hypothesis sets in neurocomputing

$$
\operatorname{span}_{n} G=\left\{\sum_{i=1}^{n} \omega_{i} g_{i} \mid \omega_{i} \in \mathbb{R}, g_{i} \in G\right\}
$$

$=$ set of functions computable by a network with one linear output and n hidden units computing functions from the set G NONLINEAR and NONCONVEX

Computational units: Heaviside perceptrons

ϑ Heaviside function

$H_{d}(X)=\left\{\vartheta(e \cdot x+b): X \rightarrow \mathbb{R} \mid e \in S^{d-1}, b \in \mathbb{R}\right\}$
set of characteristic functions of half-spaces of $X \subseteq \mathbb{R}^{d}$
$\operatorname{span}_{n} H_{d}(X)=$ set of functions on $X \subset \mathbb{R}^{d}$ computable by neural networks with n Heaviside perceptrons and one linear output

Heaviside perceptrons

compute functions of the form $\vartheta(e \cdot x+b)$
$=$ characteristic functions of half-spaces

Optimal solution

Global minimum of expected error

Regression function

$$
f_{\rho}(x)=\int_{Y} y d \rho(y \mid x)
$$

$\rho(y \mid x)=$ conditional (w.r.t. x) probability measure on Y $\rho_{X}=$ marginal probability measure on $X\left(\forall S \subseteq X \quad \rho_{X}(S)=\right.$ $\rho\left(\pi_{X}^{-1}(S)\right), \quad \pi_{X}: X \times Y \rightarrow X$ projection)

$$
\min _{f \in \mathcal{L}_{\rho_{X}}^{2}} \mathcal{E}_{\rho}(f)=\mathcal{E}_{\rho}\left(f_{\rho}\right)
$$

the regression function f_{ρ} is global minimizer of \mathcal{E}_{ρ} over $\mathcal{L}_{\rho_{X}}^{2}$

Optimal solution

Existence of the global minimum of empirical error over a set of functions computable by perceptron networks

Ito (92) $\quad \forall$ sample of data z of size m
\exists interpolating function f^{o} computable by a network with
m perceptrons $f^{o} \in \operatorname{span}_{m} H_{d}$

$$
\min _{f \in \operatorname{span}_{m} H_{d}} \mathcal{E}_{z}(f)=\mathcal{E}_{z}\left(f^{O}\right)=0
$$

similar results for RBF and kernel units

Approximate minimization

optimal solutions f^{o} and the regression function f_{ρ} may not be computable by networks with a reasonably small number of hidden units

BUT they can be approximated by suboptimal solutions
$=$ minima over $\operatorname{span}_{n} G$ with $n \ll m$ number of units
approximation of the problems $\left(\operatorname{span}_{m} G, \mathcal{E}_{z}\right)$ and $\left(\operatorname{span}_{m} G, \mathcal{E}_{\rho}\right)$ by a sequence of problems

$$
\left\{\left(\operatorname{span}_{n} G, \mathcal{E}_{z}\right) \mid n=1, \ldots, m\right\} \text { and } \quad\left\{\left(\operatorname{span}_{n} G, \mathcal{E}_{\rho}\right) \mid n=1, \ldots, m\right\}
$$

? speed of convergence?
$\inf _{f \in \operatorname{span}_{n} G} \mathcal{E}_{z}(f) \rightarrow 0 \quad$ and $\quad \inf _{f \in \operatorname{span}_{n} G} \mathcal{E}_{\rho}(f) \rightarrow \mathcal{E}_{\rho}\left(f_{\rho}\right)$

Tools from approximation theory

minimization of expected error \mathcal{E}_{ρ} is equivalent to minimization of the $\mathcal{L}_{\rho_{X}}^{2}$-distance from the regression function f_{ρ}
minimization of empirical error \mathcal{E}_{z} is equivalent to minimization of the l^{2}-distance from f_{z}
\Rightarrow we can use tools from approximation theory to estimate speed of convergence of infima (minima) of error functionals over $\operatorname{span}_{n} G$ with n increasing

Rates of convergence of infima of expected error functional over networks with n units

$$
\inf _{f \in \operatorname{span}_{n} G} \mathcal{E}_{\rho}(f)-\mathcal{E}_{\rho}\left(f_{\rho}\right) \leq \frac{\left\|f_{\rho}\right\|_{G}^{2}}{n}
$$

$\left\|f_{\rho}\right\|_{G}=$ norm tailored to G variation with respect to G
value of the variation norm at $f_{\rho}=$ measure of complexity ("smoothness") of data wrt the class of networks with units computing functions from G

Rates of convergence of minima of empirical error functional over networks with n units

for every h interpolating the sample z

$$
\inf _{f \in \operatorname{span}_{n} G} \mathcal{E}_{z}(f) \leq \frac{\|h\|_{G}^{2}}{n} .
$$

the smallest value of the variational norm of
a function interpolating z
= measure of complexity ("smoothness") of data wrt the class
of networks with units computing functions from G

Comparison with linear approximation

number of hidden units $=$ network complexity needed for approximation within ε grows as

$$
\left(\frac{\left\|f_{\rho}\right\|_{G}}{\varepsilon}\right)^{2} \quad \text { or } \quad\left(\frac{\|h\|_{G}}{\varepsilon}\right)^{2}
$$

in contrast to $\mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{d}\right)$ in linear approximation
? dependence of variational norm on dimensionality d $=$ number of variables of functions in $G=$ number of network inputs

Variation with respect to half-spaces

H_{d}-variation $=$ Minkowski functional of the closed convex symmetric hull of H_{d}

$$
\|f\|_{H_{d}}=\inf \left\{b>0: \frac{f}{b} \in c l \operatorname{conv}\left(H_{d} \cup-H_{d}\right)\right\}
$$

ϑ Heaviside activation function
$d=1$
generalization of total variation
$T(f)=\int\left|f^{\prime}\right| \quad d=1$
\approx sum of "heights of steps"

Smooth functions have small variations wrt half-paces

Kainen, Kůrková, Vogt (2005)

$$
\|f\|_{H_{d}\left(\mathbb{R}^{d}\right)} \leq k_{d}\|f\|_{d, 1, \infty}
$$

$$
k_{d}<\frac{1}{\sqrt{d}} 2^{-\frac{d}{2}}
$$

Sobolev-type seminorm
k_{d} decreases with the number of $\quad\|f\|_{d, 1, \infty}=\max _{|\alpha|=d}\left\|D^{\alpha} f\right\|_{\mathcal{L}_{1}\left(\mathbb{R}^{d}\right)}$ variables d exponentially fast
$\|f\|_{d, 1, \infty}$ is much smaller than $\|f\|_{d, 1}=\sum_{|\alpha| \leq d}\left\|D^{\alpha} f\right\|_{\mathcal{L}_{1}\left(\mathrm{R}^{d}\right)}$
$\|f\|_{d, 1, \infty}$ is maximum of partial derivatives, while $\|f\|_{d, 1}$ is sum of 2^{d} partial derivatives
$D^{\alpha} f=\frac{\partial^{\alpha}}{\partial x_{1}} \ldots \frac{\partial^{\alpha} d}{\partial x_{d}} f \quad|\alpha|=\sum_{i=1}^{d} \alpha_{i}$

Integral representation as a perceptron network with a continuum of hidden units

Kürková Kainen, Kreinovich (1997)
Kainen, Kürková, Vogt (2005)
$\forall d$ odd $\forall f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ sufficiently quickly vanishing at infinity

$$
\begin{gathered}
f(x)=\int_{S^{d-1}} \int_{\mathbb{R}} w_{f}(e, b) \vartheta(e \cdot x+b) d e d b \\
\omega_{f}(e, b)=a_{d} \int_{H_{e, b}}\left(D_{e}^{d} f\right)(y) d y \quad a_{d}=\frac{(-1)^{\frac{d-1}{2}}}{2}(2 \pi)^{1-d}
\end{gathered}
$$

$\omega_{f}(e, b)$ is orthogonal flow of order d through hyperplane $H_{e, b}=$ $\left\{x \in \mathbb{R}^{d}, e \cdot x+b=0\right\}$
a_{d} is exponentially decreasing

$$
\|f\|_{H_{d}, \text { sup }} \leq \int_{S^{d-1}} \int_{\mathbb{R}}\left|\omega_{f}(e, b)\right| d e d b=\left\|\omega_{f}\right\|_{\mathcal{L}_{1}\left(S^{d-1} \times \mathbb{R}\right)}
$$

Fast rates of approximate minimization of empirical error over perceptron networks

If a sample of data z determining the empirical error \mathcal{E}_{z}
can be interpolated by a function h
with the Sobolev seminorm $\|h\|_{d, 1, \infty} \leq \sqrt{d} 2^{d / 2}$, then

$$
\min _{f \in \operatorname{span}_{n} H_{d}} \mathcal{E}_{z}(f) \leq \frac{1}{n}
$$

Fast rates $\frac{1}{n m}$ of approximate minimization of empirical error \mathcal{E}_{z} over Heaviside perceptron networks are guaranteed for samples of data z that can be interpolated by functions with quite large Sobolev seminorms (bounded from above by $\sqrt{d} 2^{d / 2}$)

Example: Samples chosen from the Gaussian function

z sample chosen from the Gaussian function

$$
\begin{aligned}
\gamma(x) & =e^{-\|x\|^{2}}: \mathbb{R}^{d} \rightarrow \mathbb{R} \\
\|\gamma\|_{H_{d}} \leq 2 d \quad & \Rightarrow \min _{f \in \text { span }_{n} H_{d}} \mathcal{E}_{z}(f) \leq \frac{4 d^{2}}{n}
\end{aligned}
$$

relationship between two types of geometrically opposite units: perceptrons and radial-basis functions

Samples of data that cannot be interpolated by sufficiently smooth functions

every Boolean function $f:\{0,1\}^{d} \rightarrow \mathbb{R}$ determines a sample $z=\left\{\left(u_{i}, v_{i}\right) \mid i=1, \ldots, 2^{d}\right\}$ defined as
$\left\{u_{1}, \ldots, u_{2^{d}}\right\}=\{0,1\}^{d}$ and $v_{i}=f\left(u_{i}\right)$
for every function $h: X \rightarrow \mathbb{R}$ interpolating data z

$$
\|f\|_{H_{d}\left(\{0,1\}^{d}\right)} \leq\|h\|_{H_{d}(X)}
$$

\Rightarrow a lower bound on variation wrt half-spaces of the Boolean function f is also a lower bound on variation of every function h interpolating the data z defined by f
$\Rightarrow \quad$ we can use lower bounds on variations of Boolean functions

Functions with variations wrt half-spaces depending on the number of variables d exponentially
$\operatorname{card} H_{d}\left(\{0,1\}^{d}\right)<2^{d^{2}}$

BUT

$\operatorname{dim}_{\varepsilon} 2^{d}$ is large $\quad \operatorname{dim}_{\varepsilon} 2^{d}=e^{\frac{2^{d} \varepsilon^{2}}{2}}$
$\Rightarrow \quad$ there exist functions with variations wrt half-spaces depending on the number of variables d exponentially

Example:
inner product modulo 2 has $H_{d}\left(\{0,1\}^{d}\right)$-variation at least $\mathcal{O}\left(2^{d / 6}\right)$

Geometric characterization of G-variation

Kůrková, Savický, Hlaváčková 98

$$
\|f\|_{G} \geq \frac{\|f\|^{2}}{\sup _{g \in G}|f \cdot g|}
$$

functions that are "almost orthogonal" to G have large G-variation

Hahn-Banach Theorem

Functions with large variation and covering numbers
$S_{1}=S_{1}(\|\cdot\|)$ unit sphere in a Hilbert space $(X,\|\cdot\|)$
μ_{X} pseudometrics on S_{1}

$$
\mu_{X}(f, g)=\arccos |f \cdot g|
$$

minimum of two angles: between f and g and between f and $-g$
$\alpha>0 \quad \mathcal{N}_{\alpha}\left(S_{1}\right) \quad \alpha$-covering number of S_{1} with respect to μ_{X} (smallest number of balls of radius α covering S_{1})

$$
\text { if } \operatorname{card} \mathrm{G}<\mathcal{N}_{\alpha}\left(\mathrm{S}_{1}\right) \Rightarrow
$$

S_{1} contains a function with G-variation greater than $\frac{1}{\cos \alpha}$

Set of characteristic functions of Boolean half-spaces is

 small wrt covering numbers of $S^{2^{d}-1}$samples of data z represented by Boolean functions
$\left\{f:\{0,1\}^{d} \rightarrow \mathbb{R}\right\}=\mathbb{R}^{2^{d}}$
hypothesis set $=$ set of characteristic functions of half-spaces of the Boolean cube $H_{d}\left(\{0,1\}^{d}\right)$
$\operatorname{card} H_{d}\left(\{0,1\}^{d}\right)$ is small
Shläfli $\quad \operatorname{card} H_{d}\left(\{0,1\}^{d}\right)=2^{d^{2}-d \log _{2} d+\mathcal{O}(d)}<2^{d^{2}}$ as $d \rightarrow \infty$

Quasiorthogonal dimension of Euclidean spaces

$\varepsilon>0 \quad u, v \in \mathbb{R}^{m}$
(u, v) are ε-quasiorthogonal if
$|u \cdot v| \leq \varepsilon\|u\|\|v\|$

$\operatorname{dim}_{\varepsilon} m$
$=$ maximal number of pairwise ε-quasiorthogonal vectors
$\operatorname{dim}_{\varepsilon} m$ is large $\Rightarrow \mathcal{N}_{\arccos \varepsilon}\left(S^{m-1}\right)$ is large
$G \subseteq S^{m-1} \subseteq \mathbb{R}^{m} \quad \operatorname{card} \mathrm{G} \leq \operatorname{dim}_{\varepsilon} \mathrm{m} \Rightarrow \exists \mathrm{f} \in \mathrm{S}^{\mathrm{m}-1} \quad\|f\|_{G} \geq \frac{1}{\varepsilon}$

Kainen, Kůrková 93 $\operatorname{dim}_{\varepsilon} m \geq e^{\frac{m \varepsilon^{2}}{2}}$ as $\varepsilon \rightarrow 0$ and $m \rightarrow \infty$

