## Estimates of Data Complexity in Neural Network Learning

Věra Kůrková Institute of Computer Science Academy of Sciences of the Czech Republic Prague

vera@cs.cas.cz

## Learning = optimization problem



hypothesis set of network I/O functions

functional defined by data

minimize  $\Phi$  over M

 $span_n G =$  linear combinations of nfunctions corresponding to the type of computational units

expected error functional  $\mathcal{E}_{\rho}$ empirical error functional  $\mathcal{E}_z$ 

#### Functional defined by a sample of data

 $z = \{(u_i, v_i) : i = 1, \dots, m\} \subseteq \mathbb{R}^d imes \mathbb{R}$  sample of data

**Empirical error functional** 

$$\boldsymbol{\mathcal{E}}_{\boldsymbol{z}}(f) = \frac{1}{m} \sum_{i=1}^{m} (f(\boldsymbol{u}_i) - \boldsymbol{v}_i)^2$$



Minimization of empirical error functional = the least square method Gauss 1809, Legendre 1806

### Functional defined by a probability measure

ho = nondegenerate (no nonempty open set has measure zero) probability measure on  $Z = X \times Y$  ho(Z) = 1 $X \subset \mathbb{R}^d$  compact  $Y \subset \mathbb{R}$  bounded

#### **Expected error functional**

 $\mathcal{E}_{\rho}(f) = \int_{X \times Y} (f(u) - v)^2 d\rho$ 

**The least square method:** statistical inference, pattern recognition, function approximation, curve or surface fitting, etc.

the best fitting function was searched for in LINEAR hypothesis spaces

 $\Rightarrow$  limitations on applications to high-dimensional data!

## CURSE OF DIMENSIONALITY

the dimension of a linear space needed for approximation of a function of d variables within accuracy  $\varepsilon$  is  $\mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^d\right)$ 

 $\Rightarrow$  complexity of LINEAR models grows EXPONENTIALLY with the data dimension d

#### Hypothesis sets in neurocomputing

 $\operatorname{span}_{\mathbf{n}} G = \{\sum_{i=1}^{\mathbf{n}} \omega_i g_i \, | \, \omega_i \in \mathbb{R}, g_i \in G\}$ 

= set of functions computable by a network with one linear output and n hidden units computing functions from the set GNONLINEAR and NONCONVEX

## **Computational units: Heaviside perceptrons**



$$\begin{split} H_d(X) &= \{ \vartheta(e \cdot x + b) : X \to \mathbb{R} \mid e \in S^{d-1}, b \in \mathbb{R} \} \\ \text{set of characteristic functions of half-spaces of } X \subseteq \mathbb{R}^d \end{split}$$

 $\operatorname{span}_{n} H_{d}(X) = \operatorname{set}$  of functions on  $X \subset \mathbb{R}^{d}$  computable by neural networks with n Heaviside perceptrons and one linear output

#### Heaviside perceptrons



compute functions of the form  $\vartheta(\mathbf{e} \cdot x + \mathbf{b})$ 

= characteristic functions of half-spaces

#### **Optimal solution**

Global minimum of expected error

**Regression function** 

$$f_{
ho}(x) = \int_Y y \, d
ho(y|x)$$

 $\rho(y|x) = \text{conditional (w.r.t. } x) \text{ probability measure on } Y$   $\rho_X = \text{marginal probability measure on } X \quad (\forall S \subseteq X) \quad \rho_X(S) = \rho(\pi_X^{-1}(S)), \quad \pi_X : X \times Y \to X \text{ projection})$ 

$$\min_{f \in \mathcal{L}^2_{\rho_X}} \mathcal{E}_{\rho}(f) = \mathcal{E}_{\rho}(f_{\rho})$$

the regression function  $f_{\rho}$  is global minimizer of  $\mathcal{E}_{\rho}$  over  $\mathcal{L}_{\rho_X}^2$ 

## **Optimal solution**

Existence of the global minimum of empirical error over a set of functions computable by perceptron networks

Ito (92)  $\forall$  sample of data z of size m  $\exists$  interpolating function  $f^o$  computable by a network with m perceptrons  $f^o \in \operatorname{span}_m H_d$ 

$$\min_{f \in \operatorname{span}_{m} H_{d}} \mathcal{E}_{z}(f) = \mathcal{E}_{z}(f^{o}) = 0$$

similar results for RBF and kernel units

## **Approximate minimization**

optimal solutions  $f^o$  and the regression function  $f_\rho$ may not be computable by networks with a reasonably small number of hidden units

BUT they can be approximated by suboptimal solutions = minima over  $\operatorname{span}_n G$  with  $n \ll m$  number of units

approximation of the problems  $(\operatorname{span}_m G, \mathcal{E}_z)$  and  $(\operatorname{span}_m G, \mathcal{E}_\rho)$ 

by a sequence of problems

 $\{(\operatorname{span}_{\boldsymbol{n}} G, \mathcal{E}_{\boldsymbol{z}}) | \, \boldsymbol{n} = 1, \dots, \boldsymbol{m}\} \text{ and } \{(\operatorname{span}_{\boldsymbol{n}} G, \mathcal{E}_{\boldsymbol{\rho}}) | \, \boldsymbol{n} = 1, \dots, \boldsymbol{m}\}$ 

? speed of convergence ?

 $\inf_{f \in \operatorname{span}_{\boldsymbol{n}} G} \mathcal{E}_{\boldsymbol{z}}(f) \to 0 \quad \text{and} \quad \inf_{f \in \operatorname{span}_{\boldsymbol{n}} G} \mathcal{E}_{\boldsymbol{\rho}}(f) \to \mathcal{E}_{\boldsymbol{\rho}}(f_{\boldsymbol{\rho}})$ 

### **Tools from approximation theory**

minimization of expected error  $\mathcal{E}_{\rho}$  is equivalent to minimization of the  $\mathcal{L}_{\rho_X}^2$ -distance from the regression function  $f_{\rho}$ 

minimization of empirical error  $\mathcal{E}_z$  is equivalent to minimization of the  $l^2$ -distance from  $f_z$ 

 $\Rightarrow$  we can use tools from approximation theory to estimate speed of convergence of infima (minima) of error functionals over span<sub>n</sub>G with *n* increasing Rates of convergence of infima of expected error functional over networks with n units

$$\inf_{f \in \operatorname{span}_{\boldsymbol{n}} G} \mathcal{E}_{\boldsymbol{\rho}}(f) - \mathcal{E}_{\boldsymbol{\rho}}(f_{\boldsymbol{\rho}}) \leq \frac{\|f_{\boldsymbol{\rho}}\|_{G}^{2}}{n}$$

 $||f_{\rho}||_{G} =$ norm tailored to G variation with respect to G

value of the variation norm at  $f_{\rho}$  = measure of complexity ("smoothness") of data wrt the class of networks with units computing functions from G

# Rates of convergence of minima of empirical error functional over networks with n units

for every h interpolating the sample z

$$\inf_{f \in \operatorname{span}_{\boldsymbol{n}} \boldsymbol{G}} \mathcal{E}_{\boldsymbol{z}}(f) \leq \frac{\|\boldsymbol{h}\|_{\boldsymbol{G}}^2}{\boldsymbol{n}}$$

the smallest value of the variational norm of

- a function interpolating z
- = measure of complexity ("smoothness") of data wrt the class
- of networks with units computing functions from G

#### **Comparison with linear approximation**

number of hidden units = network complexity needed for approximation within  $\varepsilon$  grows as

$$\left(\frac{\|f_{\rho}\|_{G}}{\varepsilon}\right)^{2} \quad \text{or} \quad \left(\frac{\|h\|_{G}}{\varepsilon}\right)^{2}$$
  
in contrast to  $\mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{d}\right)$  in linear approximation

? dependence of variational norm on dimensionality d= number of variables of functions in G = number of network inputs

### Variation with respect to half-spaces

 $H_d$ -variation = Minkowski functional of the closed convex symmetric hull of  $H_d$ 

$$\|f\|_{H_d} = \inf\{b > 0: \frac{f}{b} \in cl \ conv(H_d \cup -H_d)\}$$

ng.

function

d = 1generalization of total variation  $T(f) = \int |f'| \qquad d = 1$  $\approx$  sum of "heights of steps"



Heaviside activation

#### Smooth functions have small variations wrt half-paces

Kainen, Kůrková, Vogt (2005)



$$\begin{split} \|f\|_{d,1,\infty} \text{ is much smaller than } \|f\|_{d,1} &= \sum_{|\alpha| \leq d} \|D^{\alpha}f\|_{\mathcal{L}_1(\mathbb{R}^d)} \\ \|f\|_{d,1,\infty} \text{ is maximum of partial derivatives,} \\ \text{while } \|f\|_{d,1} \text{ is sum of } 2^d \text{ partial derivatives} \end{split}$$

$$D^{\alpha}f = \frac{\partial^{\alpha_1}}{\partial x_1} \dots \frac{\partial^{\alpha_d}}{\partial x_d}f \qquad |\alpha| = \sum_{i=1}^d \alpha_i$$

## Integral representation as a perceptron network with a continuum of hidden units

Kůrková Kainen, Kreinovich (1997) Kainen, Kůrková, Vogt (2005)  $\forall d \text{ odd } \forall f : \mathbb{R}^d \to \mathbb{R}$  sufficiently quickly vanishing at infinity

$$\begin{split} f(x) &= \int\limits_{S^{d-1}} \int\limits_{\mathbb{R}} w_f(e,b) \vartheta(e \cdot x + b) dedb \\ \omega_f(e,b) &= a_d \int\limits_{H_{e,b}} (D_e^d f)(y) dy \qquad a_d = \frac{(-1)^{\frac{d-1}{2}}}{2} (2\pi)^{1-d} \end{split}$$

 $\omega_f(e,b)$  is orthogonal flow of order d through hyperplane  $H_{e,b}=\{x\in\mathbb{R}^d,e\cdot x+b=0\}$   $a_d$  is exponentially decreasing

$$\|f\|_{H_d,\sup} \leq \int\limits_{S^{d-1}} \int\limits_{\mathbb{R}} |\omega_f(e,b)| dedb = \|\omega_f\|_{\mathcal{L}_1(S^{d-1}\times\mathbb{R})}$$

# Fast rates of approximate minimization of empirical error over perceptron networks

If a sample of data z determining the empirical error  $\mathcal{E}_z$ can be interpolated by a function hwith the Sobolev seminorm  $||h||_{d,1,\infty} \leq \sqrt{d} 2^{d/2}$ , then

$$\min_{f \in \operatorname{span}_{\boldsymbol{n}} H_d} \mathcal{E}_{\boldsymbol{z}}(f) \leq \frac{1}{\boldsymbol{n}}$$

Fast rates  $\frac{1}{n m}$  of approximate minimization of empirical error  $\mathcal{E}_z$ over Heaviside perceptron networks are guaranteed for samples of data z that can be interpolated by functions with quite large Sobolev seminorms (bounded from above by  $\sqrt{d} 2^{d/2}$ )

#### **Example: Samples chosen from the Gaussian function**

*z* sample chosen from the Gaussian function

$$\begin{split} \gamma(x) &= e^{-\|x\|^2} : \mathbb{R}^d \to \mathbb{R} \\ \|\gamma\|_{H_d} \leq 2d \quad \Rightarrow \quad \min_{f \in span_n H_d} \mathcal{E}_z(f) \leq \frac{4d^2}{n} \end{split}$$

relationship between two types of geometrically opposite units: perceptrons and radial-basis functions

# Samples of data that cannot be interpolated by sufficiently smooth functions

every Boolean function  $f : \{0,1\}^d \rightarrow \mathbb{R}$  determines a sample  $z = \{(u_i, v_i) | i = 1, \dots, 2^d\}$  defined as  $\{u_1, \dots, u_{2^d}\} = \{0,1\}^d$  and  $v_i = f(u_i)$ 

for every function  $h:X\to \mathbb{R}$  interpolating data  $\boldsymbol{z}$ 

 $\|f\|_{H_d(\{0,1\}^d)} \le \|h\|_{H_d(X)}$ 

 $\Rightarrow$  a lower bound on variation wrt half-spaces of the Boolean function f is also a lower bound on variation of every function hinterpolating the data z defined by f

 $\Rightarrow$  we can use lower bounds on variations of Boolean functions

## Functions with variations wrt half-spaces depending on the number of variables *d* exponentially

 ${\rm card}\, H_d(\{0,1\}^d) < 2^{d^2}$ 

BUT

$$\dim_{\varepsilon} 2^d$$
 is large  $\dim_{\varepsilon} 2^d = e^{\frac{2^d \varepsilon^2}{2}}$ 

 $\Rightarrow$  there exist functions with variations wrt half-spaces depending on the number of variables d exponentially

Example: inner product modulo 2 has  $H_d(\{0,1\}^d)\text{-variation}$  at least  $\mathcal{O}(2^{d/6})$ 

## Geometric characterization of *G*-variation

Kůrková, Savický, Hlaváčková 98

 $\|f\|_{\boldsymbol{G}} \geq \frac{\|f\|^2}{\sup_{\boldsymbol{g} \in \boldsymbol{G}} |f \cdot \boldsymbol{g}|}$ 



functions that are "almost orthogonal" to G have large G-variation

Hahn-Banach Theorem

## Functions with large variation and covering numbers

 $S_1 = S_1(\|\cdot\|)$  unit sphere in a Hilbert space  $(X, \|\cdot\|)$  $\mu_X$  pseudometrics on  $S_1$  $\mu_X (f, g) = \arccos |f \cdot g|$ 

minimum of two angles: between f and g and between f and -g

 $\alpha > 0$   $\mathcal{N}_{\alpha}(S_1)$   $\alpha$ -covering number of  $S_1$  with respect to  $\mu_X$  (smallest number of balls of radius  $\alpha$  covering  $S_1$ )

if card  $G < \mathcal{N}_{\alpha}(S_1) \Rightarrow$ 

 $S_1$  contains a function with G-variation greater than  $\frac{1}{\cos \alpha}$ 

# Set of characteristic functions of Boolean half-spaces is small wrt covering numbers of $S^{2^d-1}$

samples of data z represented by Boolean functions

 $\{f: \{0,1\}^d \to \mathbb{R}\} = \mathbb{R}^{2^d}$ 

hypothesis set = set of characteristic functions of half-spaces of the Boolean cube  $H_d(\{0,1\}^d)$ 

 $\operatorname{card} H_d(\{0,1\}^d)$  is small

Shläfli card  $H_d(\{0,1\}^d) = 2^{d^2 - d \log_2 d + \mathcal{O}(d)} < 2^{d^2}$  as  $d \to \infty$ 

#### Quasiorthogonal dimension of Euclidean spaces

$$\begin{split} \varepsilon &> 0 \qquad u, v \in \mathbb{R}^m \\ (u, v) \text{ are } \varepsilon \text{-quasiorthogonal if} \\ |u \cdot v| &\leq \varepsilon \|u\| \, \|v\| \end{split}$$





 $\dim_{\boldsymbol{\varepsilon}} m$ 

= maximal number of pairwise  $\varepsilon$ -quasiorthogonal vectors

 $\dim_{\varepsilon} m$  is large  $\Rightarrow \mathcal{N}_{\arccos \varepsilon}(S^{m-1})$  is large

 $G \subseteq S^{m-1} \subseteq \mathbb{R}^m$   $\operatorname{card} G \leq \dim_{\varepsilon} m \Rightarrow \exists f \in S^{m-1}$   $\|f\|_G \geq \frac{1}{\varepsilon}$ 

Kainen, Kůrková 93  $\dim_{\varepsilon} m \ge e^{\frac{m\varepsilon^2}{2}}$  as  $\varepsilon \to 0$  and  $m \to \infty$