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Learning = optimization problem

(M, Φ)

hypothesis set
of network I/0

functions

functional
de�ned by data

minimize Φ over M

spannG = linear combinations of n

functions corresponding to the
type of computational units

expected error functional Eρ

empirical error functional Ez
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Functional de�ned by a sample of data

z = {(ui, vi) : i = 1, . . . , m} ⊆ Rd × R sample of data

Empirical error functional

Ez(f) = 1
m

m∑
i=1

(f(ui)− vi)2

Minimization of empirical error functional =
the least square method Gauss 1809, Legendre 1806
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Functional de�ned by a probability measure

ρ = nondegenerate (no nonempty open set has measure zero)
probability measure on Z = X × Y ρ(Z) = 1

X ⊂ Rd compact Y ⊂ R bounded

Expected error functional

Eρ(f) =
∫
X×Y (f(u)− v)2dρ
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The least square method: statistical inference, pattern reco-
gnition, function approximation, curve or surface �tting, etc.

the best �tting function was searched for in
LINEAR hypothesis spaces

⇒ limitations on applications to high-dimensional data!

CURSE OF DIMENSIONALITY

the dimension of a linear space needed for approximation of a
function of d variables within accuracy ε is

O
((

1
ε

)d
)

⇒ complexity of LINEAR models grows EXPONENTIALLY
with the data dimension d
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Hypothesis sets in neurocomputing

spann G = {∑n
i=1 ωigi |ωi ∈ R, gi ∈ G}

= set of functions computable by a network with one linear
output and n hidden units computing functions from the set G

NONLINEAR and NONCONVEX
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Computational units: Heaviside perceptrons

ϑ Heaviside function

Hd(X) = {ϑ(e · x + b) : X → R | e ∈ Sd−1, b ∈ R}
set of characteristic functions of half-spaces of X ⊆ Rd

spannHd(X) = set of functions on X ⊂ Rd computable by neural
networks with n Heaviside perceptrons and one linear output
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Heaviside perceptrons

compute functions of the form ϑ(e · x + b)

= characteristic functions of half-spaces
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Optimal solution

Global minimum of expected error

Regression function
fρ(x) =

∫
Y y dρ(y|x)

ρ(y|x) =conditional (w.r.t. x) probability measure on Y

ρX = marginal probability measure on X (∀S ⊆ X ρX(S) =
ρ(π−1

X (S)), πX : X × Y → X projection)

minf∈L2
ρX
Eρ(f) = Eρ(fρ)

the regression function fρ is global minimizer of Eρ over L2
ρX
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Optimal solution

Existence of the global minimum of empirical error over a set of
functions computable by perceptron networks

Ito (92) ∀ sample of data z of size m
∃ interpolating function fo computable by a network with
m perceptrons fo ∈ spanmHd

minf∈ spanmHd
Ez(f) = Ez(fo) = 0

similar results for RBF and kernel units
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Approximate minimization

optimal solutions fo and the regression function fρ

may not be computable by networks with a reasonably small
number of hidden units

BUT they can be approximated by suboptimal solutions
= minima over spannG with n << m number of units

approximation of the problems (spanmG, Ez) and (spanmG, Eρ)

by a sequence of problems

{(spannG, Ez )|n = 1, . . . , m} and {(spannG, Eρ )|n = 1, . . . , m}

? speed of convergence ?

inf
f∈ spannG

Ez(f) → 0 and inf
f∈ spannG

Eρ(f) → Eρ(fρ)
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Tools from approximation theory

minimization of expected error Eρ is equivalent to
minimization of the L2

ρX
-distance from the regression function fρ

minimization of empirical error Ez is equivalent to
minimization of the l2-distance from fz

⇒ we can use tools from approximation theory to
estimate speed of convergence of in�ma (minima) of
error functionals over spannG with n increasing
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Rates of convergence of in�ma of
expected error functional over networks with n units

inf
f∈spannG

Eρ(f)− Eρ(fρ) ≤ ‖fρ‖2
G

n
.

‖fρ‖G =norm tailored to G

variation with respect to G

value of the variation norm at fρ = measure of complexity (\smo-
othness") of data wrt the class of networks with units computing
functions from G
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Rates of convergence of minima of
empirical error functional over networks with n units

for every h interpolating the sample z

inf
f∈spannG

Ez(f) ≤ ‖h‖2
G

n
.

the smallest value of the variational norm of
a function interpolating z

= measure of complexity (\smoothness") of data wrt the class
of networks with units computing functions from G
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Comparison with linear approximation

number of hidden units = network complexity needed for appro-
ximation within ε grows as

(
‖fρ‖G

ε

)2
or

(
‖h‖G

ε

)2

in contrast to O
((

1
ε

)d
)

in linear approximation

? dependence of variational norm on dimensionality d

= number of variables of functions in G = number of network
inputs

15



Variation with respect to half-spaces

Hd-variation = Minkowski functional of the
closed convex symmetric hull of Hd

‖f‖Hd
= inf{b > 0 : f

b ∈ cl conv(Hd ∪ −Hd)}

d = 1
generalization of total variation
T (f) =

∫ |f ′| d = 1
≈ sum of \heights of steps"

ϑ Heaviside activation
function
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Smooth functions have small variations wrt half-paces

Kainen, K�urková, Vogt (2005)

‖f‖Hd(Rd) ≤ kd ‖f‖d,1,∞

kd < 1√
d
2−

d
2

kd decreases with the number of
variables d exponentially fast

Sobolev-type seminorm
‖f‖d,1,∞ = max

|α|=d
‖Dαf‖L1(Rd)

‖f‖d,1,∞ is much smaller than ‖f‖d,1 =
∑

|α|≤d
‖Dαf‖L1(Rd)

‖f‖d,1,∞ is maximum of partial derivatives,
while ‖f‖d,1 is sum of 2d partial derivatives

Dαf = ∂α1
∂x1

. . . ∂αd

∂xd
f |α| =

∑d
i=1 αi
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Integral representation as a perceptron network
with a continuum of hidden units

K�urková Kainen, Kreinovich (1997)
Kainen, K�urková, Vogt (2005)
∀d odd ∀f : Rd → R su�ciently quickly vanishing at in�nity

f(x) =
∫

Sd−1

∫

R

wf (e, b)ϑ(e · x + b)dedb

ωf (e, b) = ad

∫

He,b

(Dd
ef)(y)dy ad =

(−1)
d−1

2

2
(2π)1−d

ωf (e, b) is orthogonal ow of order d through hyperplane He,b =
{x ∈ Rd, e · x + b = 0}
ad is exponentially decreasing

‖f‖Hd,sup ≤
∫

Sd−1

∫

R

|ωf (e, b)|dedb = ‖ωf‖L1(Sd−1×R)

18



Fast rates of approximate minimization
of empirical error over perceptron networks

If a sample of data z determining the empirical error Ez

can be interpolated by a function h

with the Sobolev seminorm ‖h‖d,1,∞ ≤ √
d 2d/2, then

min
f∈ spannHd

Ez(f) ≤ 1
n

Fast rates 1
n m of approximate minimization of empirical error Ez

over Heaviside perceptron networks are guaranteed for samples
of data z that can be interpolated by functions with quite large
Sobolev seminorms (bounded from above by

√
d 2d/2)
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Example: Samples chosen from the Gaussian function

z sample chosen from the Gaussian function

γ(x) = e−‖x‖2
: Rd → R

‖γ‖Hd
≤ 2d ⇒ minf∈spannHd

Ez(f) ≤ 4d2

n

relationship between two types of geometrically opposite units:
perceptrons and radial-basis functions
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Samples of data that cannot be
interpolated by su�ciently smooth functions

every Boolean function f : {0, 1}d → R determines a sample
z = {(ui, vi)|i = 1, . . . , 2d} de�ned as
{u1, . . . , u2d} = {0, 1}d and vi = f(ui)

for every function h : X → R interpolating data z

‖f‖Hd({0,1}d) ≤ ‖h‖Hd(X)

⇒ a lower bound on variation wrt half-spaces of the Boolean
function f is also a lower bound on variation of every function h

interpolating the data z de�ned by f

⇒ we can use lower bounds on variations of Boolean functions
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Functions with variations wrt half-spaces
depending on the number of variables d exponentially

card Hd({0, 1}d) < 2d2

BUT

dimε 2d is large dimε 2d = e
2dε2

2

⇒ there exist functions with variations wrt half-spaces
depending on the number of variables d exponentially

Example:
inner product modulo 2 has Hd({0, 1}d)-variation
at least O(2d/6)

22



Geometric characterization of G-variation

K�urková, Savický, Hlaváèková 98

‖f‖G ≥ ‖f‖2

sup
g∈G

|f · g|

functions that are \almost orthogonal" to G have large G-variation

Hahn-Banach Theorem
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Functions with large variation and covering numbers

S1 = S1(‖ · ‖) unit sphere in a Hilbert space (X, ‖ · ‖)
µX pseudometrics on S1

µX (f, g) = arccos |f · g|

minimum of two angles: between f and g and between f and −g

α > 0 Nα(S1) α-covering number of S1 with respect to µX

(smallest number of balls of radius α covering S1)

if card G < Nα(S1) ⇒
S1 contains a function with G-variation greater than 1

cos α
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Set of characteristic functions of Boolean half-spaces is
small wrt covering numbers of S2d−1

samples of data z represented by Boolean functions

{f : {0, 1}d → R} = R2d

hypothesis set = set of characteristic functions of half-spaces of
the Boolean cube Hd({0, 1}d)

card Hd({0, 1}d) is small

Shläi card Hd({0, 1}d) = 2d2−d log2 d+O(d) < 2d2 as d →∞

25



Quasiorthogonal dimension of Euclidean spaces

ε > 0 u, v ∈ Rm

(u, v) are ε-quasiorthogonal if
|u · v| ≤ ε‖u‖ ‖v‖

α = arccos ε

dimεm

= maximal number of pairwise ε-quasiorthogonal vectors

dimεm is large ⇒ N arccos ε(Sm−1) is large

G ⊆ Sm−1 ⊆ Rm card G ≤ dimε m ⇒ ∃f ∈ Sm−1 ‖f‖G ≥ 1
ε

Kainen, K�urková 93 dimε m ≥ e
mε2

2 as ε → 0 and m →∞
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