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Learning = optimization problem

(M, D)

/ \
functional

defined by data

hypothesis set
of network 1/0
functions

minimize ¢ over M

spanp G = linear combinations of n
functions corresponding to the
type of computational units

expected error functional &,
empirical error functional &,



Functional defined by a sample of data
z={(uj,v;)i=1,...,m} CRYx R sample of data

Empirical error functional

Ef) = %gl(f(uz') — v;)?

(U Vi)

Minimization of empirical error functional =
the least square method Gauss 1809, Legendre 1806



Functional defined by a probability measure

p = nondegenerate (N0 nonempty open set has measure zero)
probability measure on Z=X xY p(Z)=1
X C R? compact Y R bounded

Expected error functional

En(f) = Jxxy (f(u) —v)%dp



The least square method: statistical inference, pattern reco-
gnition, function approximation, curve or surface fitting, etc.

the best fitting function was searched for in
LINEAR hypothesis spaces

= |limitations on applications to high-dimensional data!

CURSE OF DIMENSIONALITY

the dimension of a linear space needed for approximation of a
function of d variables within accuracy ¢ is

o

= complexity of LINEAR models grows EXPONENTIALLY
with the data dimension d



Hypothesis sets in neurocomputing
span,, G = {31 jw;g; |w; € R, g; € G}
— set of functions computable by a network with one linear

output and n hidden units computing functions from the set G
NONLINEAR and NONCONVEX



Computational units: Heaviside perceptrons

¥ Heaviside function

o O

HyX)={%le-xz+b): X -R|ec S beR}
set of characteristic functions of half-spaces of X C R¢

span,, H;(X) = set of functions on X C R% computable by neural
networks with n Heaviside perceptrons and one linear output



Heaviside perceptrons
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compute functions of the form (e -z + b)

— characteristic functions of half-spaces



Optimal solution
Global minimum of expected error

Regression function

fo(®) = Jy ydp(yl|z)
p(y|lr) =conditional (w.r.t. ) probability measure on Y
px = marginal probability measure on X (VS C X  px(S) =
p(ﬁ)_(l(S)), wx : X XY — X projection)

min ;o L2 Ep(f) = Ep(fp)

the regression function f, is global minimizer of &, over E%X



Optimal solution

Existence of the global minimum of empirical error over a set of
functions computable by perceptron networks

Ito (92) V sample of data z of size m
d interpolating function f° computable by a network with

m perceptrons f¢ € span,,, H,

minfe span,, [ gz(f) — gz(fo) -

similar results for RBF and kernel units
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Approximate minimization

optimal solutions f“ and the regression function f,

may not be computable by networks with a reasonably small
number of hidden units

BUT they can be approximated by suboptimal solutions
= minima over span, G with n << m number of units

approximation of the problems (span,,G,E-) and (span,,G, Ep)
by a sequence of problems

{(span,,G,&;)|n=1,...,m} and  {(span,G,&))|n=1,...,m}

? speed of convergence 7
1 0 and inf & £
fESIglannG 2(f) — n ic sglannG o(f) — Eo(fp)
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Tools from approximation theory

minimization of expected error &, is equivalent to
minimization of the E%X—distance from the regression function f,

minimization of empirical error £, is equivalent to
minimization of the [?-distance from f.

= we can use tools from approximation theory to
estimate speed of convergence of infima (minima) of
error functionals over span, G with n increasing
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Rates of convergence of infima of
expected error functional over networks with n units

| £l
f — < ==
e G Ep(f) — Eplfp) < -

| follc =norm tailored to G
variation with respect to G

value of the variation norm at f, = measure of complexity (“smo-
othness” ) of data wrt the class of networks with units computing

functions from G
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Rates of convergence of minima of
empirical error functional over networks with n units

for every h interpolating the sample z

inf  E,(f) < ||h||2G
féEspan,, G n

the smallest value of the variational norm of

a function interpolating z

= measure of complexity (“smoothness”) of data wrt the class
of networks with units computing functions from G
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Comparison with linear approximation

number of hidden units = network complexity needed for appro-
ximation within € grows as

(e (2]

d
in contrast to O ((%) ) in linear approximation

e dependence of variational norm on dimensionality d
= number of variables of functions in ¢ = number of network
inputs
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Variation with respect to half-spaces

H g -variation = Minkowski functional of the
closed convex symmetric hull of Hj,

|1, =nf{b>0: % € cl conv(Hy; U —H,;)}

¥  Heaviside activation

function
d=1

generalization of total variation ﬂ
T(f):f|f/| d=1 w
~ sum of “heights of steps”
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Smooth functions have small variations wrt half-paces
Kainen, Kirkova, Vogt (2005)

1N 7 may < Ea [l Flla,1,00

/\

d
kg < LdQ_i Sobolev-type seminorm
kq decreases with the number of || f|[41 00 = max ||D0‘f||£1(Rd>
variables d exponentially fast af=d

[f1ld,1,00 is much smaller than [[f{[z; = > [[D%f]l, pd
il ) |Oé|<d 1( )

[ f1ld.1.00 1S Maximum of partial derivatives,
while || f]|41 is sum of 2¢ partial derivatives

01 0%d
Dafza—xl---a—%f o] = Zz 1%
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Integral representation as a perceptron network
with a continuum of hidden units

Kirkova Kainen, Kreinovich (1997)
Kainen, Kirkova, Vogt (2005)
Vd odd Vf : R? — R sufficiently quickly vanishing at infinity

f(x) = / /wf(e, b)V(e - x 4 b)dedb

d—1
S R d—1

wyle,b) = adH/ (DLf)(y)dy ag = (_12)7(%)1—61

w¢(e,b) is orthogonal flow of order d through hyperplane H,; =
{reR e -x+b=0}
ag 1S exponentially decreasing

[P ligon < [ [ lwgle,blldedd = llwplz,si-10m,
gd—1 R
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Fast rates of approximate minimization
of empirical error over perceptron networks

If a sample of data z determining the empirical error &,

can be interpolated by a function h
with the Sobolev seminorm ||hl|g1.00 < Vd 292, then

1
min & < —
fé€span, H, Z(f) n

Fast rates ﬁ of approximate minimization of empirical error &,
over Heaviside perceptron networks are guaranteed for samples
of data z that can be interpolated by functions with quite large

Sobolev seminorms (bounded from above by +/d 29/?)
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Example: Samples chosen from the Gaussian function

z sample chosen from the Gaussian function
v(x) = eIzl R L R

. 4d2
||7||Hd < 2d = I £ e span, H gZ(f) < o

relationship between two types of geometrically opposite units:
perceptrons and radial-basis functions
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Samples of data that cannot be
interpolated by sufficiently smooth functions

every Boolean function f : {O,l}d — R determines a sample
z = {(uj,v;)|i =1,...,29} defined as
{ug, ... uga} = {0,1}¢ and v; = f(u;)

for every function h: X — R interpolating data z

HfHHd({O,l}d) < ||h||Hd(X)

= a lower bound on variation wrt half-spaces of the Boolean
function f is also a lower bound on variation of every function h
interpolating the data z defined by f

= we can use lower bounds on variations of Boolean functions
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Functions with variations wrt half-spaces
depending on the number of variables d exponentially

card H  ({0,1}9) < 2@’

BUT

2d€2

dimg 2¢ is large  dimg2% = ¢ 2

= there exist functions with variations wrt half-spaces
depending on the number of variables d exponentially

Example:

inner product modulo 2 has H;({0,1}%)-variation
at least 0(24/6)
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Geometric characterization of G-variation

Kdrkova, Savicky, Hlavackova 98

1117

sup |f - g
geG

Iflle =

functions that are “almost orthogonal” to G have large GG-variation

Hahn-Banach Theorem
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Functions with large variation and covering numbers

S1=S1(|]| - ||) unit sphere in a Hilbert space (X, | - ||)
ux pseudometrics on Sy

px (f,g) = arccos|f - g

minimum of two angles: between f and g and between f and —g

a>0 Na(S]) a-covering number of S; with respect to uyx
(smallest number of balls of radius « covering Sy)

if card G < No(S1) =

S1 contains a function with G-variation greater than Coéa
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Set of characteristic functions of Boolean half-spaces is
small wrt covering numbers of $2'~!

samples of data z represented by Boolean functions
{f:{0,137 - R} = R*

hypothesis set = set of characteristic functions of half-spaces of
the Boolean cube Hy({0,1}9)

card H;({0,1}%) is small

Shiafli  card H ({0, 1}4) = od°~dloga d+0(d) - 9d* 35 g —; oo
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Quasiorthogonal dimension of Euclidean spaces

e>0 wu,veR™ ’
(u,v) are e-quasiorthogonal if
u - v < ellul [|v]

u

. = arccos e

dimgm

= maximal number of pairwise s-quasiorthogonal vectors

dimem is large = Narccose(S™ 1) is large

G C smlCRrR™ card G < dimem = 3f € ™1 || f|lg > 1

2
: - , . me*
Kainen, Karkova 93 dimem > e 2 ase—0and m — oo

26



