Model-Checking Large Finite State Systems and Beyond

Lubo$ Brim & Mojmir K¥etinsky
Masaryk University Brno

Part Il (Beyond FS): Infinite state systems

Mojmir K¥etinsky

A joint work with Vojtéch Rehak and Jan Strejeek

SOFSEM 2007 25.1.2007

Motivation

e modelling (some features of) current SW, e.g. programs with unbounded
control structure (unbounded depth of recursive call, dynamic creation of
concurrent process) and their synchronization

)

need of infinite-state systems

e examples of standard formalisms:

— process algebras: BPA, BPP, PA

— Petri nets (PN)

— pushdown systems (PDA), recursive state machines
— process rewrite systems (PRS)

e Goal: find a balance between expressiveness and decidability

e we study extensions of PRS improving expressiveness and keeping decidability

Outline

e Process rewrite system (PRS) and program modeling

— rewriting concepts in modeling
— process rewrite system (PRS), hierarchy

— subclasses of PRS and program modeling
e Extensions of PRS and their expressiveness

— state extended PRS (sePRS)
— weakly extended PRS (wPRS)

e Decidability results and their applications

— Reachability problem is decidable for wPRS
— Reachability Hennessy-Milner property is decidable for wPRS

— Model checking problem is decidable for wPRS and Lamport
logic

Process rewrite system (PRS)

e rewriting concepts in modeling
e process rewrite system (PRS) [Mayr98]

e subclasses of PRS and program modeling

PRS - An Intuitive Introduction (FS)

Rewrite systems (e.g. grammars) and LTS (e.g. automata state graphs)

(Process) rewrite systems as generators of process behaviours (Labelled tran-
sition systems)

interpret grammar rules (generating strings) as rules for generating behaviours.

Type 3 rules

e a rule A — aB becomes a rule
A—B
A process A can perform an action a and become a process B
e a rule A — a becomes a rule
A — ¢
A process A can perform an action a and terminate

e can model nondeterministic finite state systems

PRS - An Intuitive Introduction: context-free rules

A context—free rule in GNF A — aBC should become A -2 BC

How to interpret concatenation (juxtaposition) BC ?

To model sequential and/or parallel compositions of systems we make use of

e sequential operator .’ (rather than Unix like ';', e.g. xterm; xterm;)
"." Is associative
and

e parallel operator '||' (rather than Unix like '&’, e.g. xterm& xterm&)

'I|" is associative and commutative

PRS - An Intuitive Introduction: context-free

A sequential (context-free) rule

A 3 B.C

e a process A can perform an action a and become a sequential composition

of B and C

e in a state B.C no C-rule is applicable (i.e. C cannot move) until B does
not terminate (left derivations only — prefix rewriting)

e we can model recursive procedures

A parallel (context-free) rule

A —= BJ|C

® a process A can perform an action a and become a parallel composition of

B and C
e in a state B||C both C—rules and B-rules can be applied

e can model dynamic creation of (asynchronous) parallel processes

PRS - An Intuitive Introduction: context-free

Type 2 (context-free) sequential and parallel rules:

A - (B||C).D

cobegin — coend section, fork — join

PRS - An Intuitive Introduction: other rules

Type 0 (“context-sensitive”) rules:

e parallel composition only (multiset rewriting)

AllB — C|ID
communication and synchronization

e sequential composition only (prefix rewriting)

CDhD-SFE

value passing, recursive calls returning values over finite data domains

e other combinations are useful as well

Rewriting models (of control flow graphs) of programs

Programs with

e procedures/methods and recursion, and/or

e concurrency and communication (processes/threads, cobegin-coend sections)

are “compiled” (abstracted) into simpler and formal models.

We use rewriting concepts, i.e. we model:

e program states as terms (states of LTS),

e program instructions as term-rewriting rules (generate transitions in LTS),
and

e program executions as sequences of rewriting steps (paths in LTS).

10

Process Terms

Process terms are expressions of the form
tx=¢ | X | tt | tt
where

e ¢ Is an empty term

e X ranges over set {A, B, C, ...} of process constants

e "." is associative sequential operator
e “||" is associative and commutative parallel operator
e.g.

e|[A=Alle=A=A.e=¢c.A
Al (BIIC) = (A[B)[|C = CJ|(A[B)
A.(B.C) = (A.B).C # C.(A.B)

11

Process Rewrite System (PRS)

PRS — a finite set of rewrite rules and an initial term

R={ AB <% C|D , B <> AB

c < ¢ I S

LTS is induced by R starting in the initial term (state) BJ|E
~B|E—>(AB)|[E—(C|D)E*—~"--

e e -

BJF b (AB)[F—=~ (C[D)[F— -

12

Classes of Process Terms

We define these classes of process terms:
“1" process constants, e.g. A
“S™ only sequential composition, e.g. A.B.C

“P" only parallel composition, e.g. A||B||C

“G" general terms, e.g. A.(B|[(C.D))

13

Classes of Process Rewrite Systems

(1,1)-PRS class Finite-state Systems
a b
R={A — B, B — ¢,
ASc, cSe)
A—"—B
d b

14

Classes of Process Rewrite Systems

(1,P)-PRS class Basic Parallel Processes

/

R={A S AJA, A ¢,
/
BLBIB, B)
a a a
— A[|A]B AlAlIA|B
a a a
b/‘ b b/| lb
a a
— A[A[B||B ——- A[|A[|A|B||B
a a a
b" b b’] lb

15

Classes of Process Rewrite Systems

(1,5)-PRS class Basic Process Algebra

R={A < AA B < A.B A< o¢
/
BLXBB, ASBA, Be)
a’ A b
A.A// *B.A
2NN 8NN
/ k / k
AAA B.A.A A.B.A B.B.A

16

Classes of Process Rewrite Systems

(1,G)-PRS class Process Algebra
R={A < AA, B A|B.C,...)

(S5,S)-PRS class PDA
R={ACSD, BAD<B.C,..)
(P,P)-PRS class Petri Nets

R={A|B<=C|B, Bw=A|C,...]

17

PRS hierarchy, models

PRS
(G, G)-PRS
/ \

PAD PAN
(S, G)-PRS (P, G)-PRS
T~ —
PDA PA PN
(S,S)-PRS (1,G)-PRS (P, P)-PRS
— ™~
BPA BPP
(1,S)-PRS (1,P)-PRS
FS
(1,1)-PRS

is strict w.r.t. strong bisimulation equivalence

18

Extensions of PRS and their Expressiveness

e state extended PRS (sePRS),
e weakly extended PRS (wPRS)

19

State Extended PRS (sePRS)

sePRS = PRS + finite-state control unit

e.g.
PDA = BPA -+ finite-state control unit
!/
R={pA = pA.A, pA o pe

b b’
pB — gB.B , qB — pB.B }

20

State Extended PRS-hierarchy

BPP

\

seFS=FS

21

Motivation for Weak State Extension

4 (out of 5) new sePRS classes have a full Turing-power

)

sePRS are too strong

U
weakly extended PRS (wPRS) [Infinity 2003]

1-weak (or very weak) restriction from the automata theory
(i.e. no cycle except self-loops)

1-weak restriction: There is a partial ordering on states of the finite-
state unit such that the transition relation respects the ordering

22

Extended PRS-hierarchy

sePRS

{se, w}FS=FS

23

Turing Powerfull Classes

sePRS

24

Reachability Problem

Instance:
Question:

(o, B)-(se-,w-)PRS system and two of its states s1, s
|s the state s, reachable from s;

. *
l.e. S1 — Sz?

w0 .

25

Reachability Problem

sePRS

26

Reachability Problem

[CONCUR’04]

sePRS

27

Reachability problem

Theorem [Mayr1998]: Reachability problem is decidable for PRS.
Theorem: Reachability problem is decidable for wPRS.

Applications:

e model checking some of safety properties

e reachability for Huttel and Srba's replicative variant of Dolev and Yao's
ping-pong protocols [Hiittel-Srba05]

e weak trace non-equivalence is semi-decidable for wPRS

28

Reachability HM Property

Instance: («, [3)-(se-,w-)PRS system with the initial state s
and an HM formula ¢
Question: sy = EF?

HM formula: V= tt | = | Y1 A2 | ()P

nesting of diamonds

Example:

so = EF((a)tt /\ (b)({a)tt /\ —(b)tt) N\ —(c)tt)

\t> ? ,C\%b //
C/\ b

29

Reachability HM Properties

sePRS
PR

30

Reachability HM Properties srrcsos

sePRS
N,

31

Reachability HM property

Theorem: Reachability HM property is decidable for wPRS.

Theorem [JKMO01]: Decidability of reachability HM property = decidability
of strong bisimilarity with FS.

Corollary: Strong bisimilarity between wPRS and FS is decidable.

(an open question for PAN and PRS since 1998)

32

Decidability of EF logic

Instance: («, [3)-(se-,w-)PRS system with the initial state s
and an EF formula ¢
Question: sy = @7

HM formula: V= tt | = | Y1 AV | (o) | ERD

nesting of EF operators

Example:

so = EF((a)tt /\ (b)((a)tt A\ EF(b)tt) N\ —(c)tt)

\Q i O/
? b ? e b
c/\

33

Decidability of EF Logic

sePRS
N,

34

Decidability of EF Logic

sePRS
N,

sePA D
[BSTO6] wPAD
[Mayr98] PAD

35

Decidability of Linear Time Logic (LTL)

Instance: («, [3)-(se-,w-)PRS system with the initial state s
and an LTL formula ¢
Question: sy = @7

LTL formula: V= tt | a | = | b1 AD; | X | WU

where a is an action

Example:

Xa next babacdabdca...
aUb until a...abacdab...

36

Decidability of LTL

[BEMY7]

sePRS

37

Lamport Logic Definition

Linear Temporal Logic

@ ==ttt] al ~@ | eAp | Xo | oUe.

Xa next babacdabdca...
aUb until a...abacdab...

Lamport Logic
@ ==ttt | al - | Ao | Fo.

Fo “eventually ¢” ttU @
G “always @" —F=¢

liveness: F@ “@ eventually happens”, safety: G—¢ “@ never happens”

38

Decidability of Lamport Logic

[BEMY7]

sePRS
PR

[Esp94|

39

Decidability of Lamport Logic srrcsos

[BEMY7]

sePRS

40

Summary

Summary

e introducing more expressive wPRS classes
e reachability problem is decidable for wPRS

e reachability HM property is decidable for wPRS
bisimulation with FS is decidable for wPRS

e L amport logic is decidable for wPRS

41

Corresponding papers

[INFINITY’03] - M. K¥etinsky, V. Rehak, and J. Strejéek: On Extensions
of Process Rewrite Systems: Rewrite Systems with Weak Finite-
State Unit, in INFINITY 2003, ENTCS 98, pp. 75-88. Elsevier, 2004.

[CONCUR’04] - M. K¥etinsky, V. Rehak. and J. Strejéek: Extended Pro-
cess Rewrite Systems: Expressiveness and Reachability, in CONCUR
2004, LNCS 3170, pp. 355-370. Springer, 2004.

[INFINITY’05] - M. K¥etinsky, V. Rehak, and J. Strejéek: Refining the Un-
decidability Border of Weak Bisimilarity, in INFINITY 2005, ENTCS
149:1, pp.17-36, Elsevier, 2006.

[FSTTCS’05] - M. Kketinsky, V. Rehdk, and J. Strejéek: Reachability of
Hennessy-Milner Properties for Weakly Extended PRS, in FSTTCS
2005, LNCS 3821, pp.213-224. Springer, 2005.

[FSTTCS’06] - L. Bozzelli, M. K¥etinsky, V. Rehak, and J. Strejéek: On
Decidability of LTL Model Checking for Process Rewrite Systems,
in FSTTCS 2006, LNCS 4337, pp. 248-259. Springer, 2006.

42

