
Model-Checking Large Finite State Systems and Beyond

Luboš Brim & Mojḿır Křet́ınský
Masaryk University Brno

Part II (Beyond FS): Infinite state systems

Mojḿır Křet́ınský

A joint work with Vojtěch Řehák and Jan Strejček

SOFSEM 2007 25. 1. 2007

Motivation

• modelling (some features of) current SW, e.g. programs with unbounded
control structure (unbounded depth of recursive call, dynamic creation of
concurrent process) and their synchronization

⇓

need of infinite-state systems

• examples of standard formalisms:

– process algebras: BPA, BPP, PA

– Petri nets (PN)

– pushdown systems (PDA), recursive state machines

– process rewrite systems (PRS)

• Goal: find a balance between expressiveness and decidability

• we study extensions of PRS improving expressiveness and keeping decidability

2

Outline

• Process rewrite system (PRS) and program modeling

– rewriting concepts in modeling

– process rewrite system (PRS), hierarchy

– subclasses of PRS and program modeling

• Extensions of PRS and their expressiveness

– state extended PRS (sePRS)

– weakly extended PRS (wPRS)

• Decidability results and their applications

– Reachability problem is decidable for wPRS

– Reachability Hennessy-Milner property is decidable for wPRS

– Model checking problem is decidable for wPRS and Lamport
logic

3

Process rewrite system (PRS)

• rewriting concepts in modeling

• process rewrite system (PRS) [Mayr98]

• subclasses of PRS and program modeling

4

PRS - An Intuitive Introduction (FS)

Rewrite systems (e.g. grammars) and LTS (e.g. automata state graphs)

(Process) rewrite systems as generators of process behaviours (Labelled tran-
sition systems)

interpret grammar rules (generating strings) as rules for generating behaviours.

Type 3 rules

• a rule A −→ aB becomes a rule

A
a

−→ B

A process A can perform an action a and become a process B

• a rule A −→ a becomes a rule

A
a

−→ ε

A process A can perform an action a and terminate

• can model nondeterministic finite state systems

5

PRS - An Intuitive Introduction: context-free rules

A context–free rule in GNF A −→ aBC should become A
a

−→ BC

How to interpret concatenation (juxtaposition) BC ?

To model sequential and/or parallel compositions of systems we make use of

• sequential operator ’.’ (rather than Unix like ’;’, e.g. xterm; xterm;)
’.’ is associative

and

• parallel operator ’||’ (rather than Unix like ’&’, e.g. xterm& xterm&)
’||’ is associative and commutative

6

PRS - An Intuitive Introduction: context-free

A sequential (context-free) rule

A
a

−→ B.C

• a process A can perform an action a and become a sequential composition
of B and C

• in a state B.C no C–rule is applicable (i.e. C cannot move) until B does
not terminate (left derivations only – prefix rewriting)

• we can model recursive procedures

A parallel (context-free) rule

A
a

−→ B||C

• a process A can perform an action a and become a parallel composition of
B and C

• in a state B||C both C–rules and B–rules can be applied

• can model dynamic creation of (asynchronous) parallel processes

7

PRS - An Intuitive Introduction: context-free

Type 2 (context-free) sequential and parallel rules:

A
a

−→ (B||C).D

cobegin – coend section, fork – join

8

PRS - An Intuitive Introduction: other rules

Type 0 (“context-sensitive”) rules:

• parallel composition only (multiset rewriting)

A||B
a

−→ C||D

communication and synchronization

• sequential composition only (prefix rewriting)

C.D
a

−→ E

value passing, recursive calls returning values over finite data domains

• other combinations are useful as well

9

Rewriting models (of control flow graphs) of programs

Programs with

• procedures/methods and recursion, and/or

• concurrency and communication (processes/threads, cobegin-coend sections)

are “compiled” (abstracted) into simpler and formal models.

We use rewriting concepts, i.e. we model:

• program states as terms (states of LTS),

• program instructions as term-rewriting rules (generate transitions in LTS),
and

• program executions as sequences of rewriting steps (paths in LTS).

10

Process Terms

Process terms are expressions of the form

t ::= ε | X | t.t | t||t

where

• ε is an empty term

• X ranges over set {A,B,C, . . .} of process constants

• “.” is associative sequential operator

• “||” is associative and commutative parallel operator

e.g.

ε‖A = A‖ε = A = A.ε = ε.A

A‖(B‖C) = (A‖B)‖C = C‖(A‖B)

A.(B.C) = (A.B).C 6= C.(A.B)

11

Process Rewrite System (PRS)

PRS – a finite set of rewrite rules and an initial term

R = { A.B
a

↪→ C‖D , B
b

↪→ A.B

C
c

↪→ ε , E
d

↪→ F }

LTS is induced by R starting in the initial term (state) B‖E

B‖E b

d

(A.B)‖E a

d

(C‖D)‖E c

d

· · ·

B‖F b (A.B)‖F a (C‖D)‖F c · · ·

12

Classes of Process Terms

We define these classes of process terms:

“1” process constants, e.g. A

“S” only sequential composition, e.g. A.B.C

“P” only parallel composition, e.g. A‖B‖C

“G” general terms, e.g. A.(B‖(C.D))

13

Classes of Process Rewrite Systems

(1,1)-PRS classFinite-state Systems

R = { A
a
↪→ B , B

b
↪→ ε ,

A
d
↪→ C , C

c
↪→ ε }

A
a

d

B

b

C
c ε

14

Classes of Process Rewrite Systems

(1,P)-PRS classBasic Parallel Processes

R = { A
a
↪→ A‖A , A

a ′
↪→ ε ,

B
b
↪→ B‖B , B

b ′
↪→ ε }

· · ·
a

a ′
A‖A‖B

a

a ′

bb ′

A‖A‖A‖B
a

a ′

bb ′

· · ·

· · ·
a

a ′
A‖A‖B‖B

a

a ′

bb ′

A‖A‖A‖B‖B
a

a ′

bb ′

· · ·

· · · · · · · · · · · ·

15

Classes of Process Rewrite Systems

(1,S)-PRS classBasic Process Algebra

R = { A
a
↪→ A.A , B

a
↪→ A.B , A

a ′
↪→ ε ,

B
b
↪→ B.B , A

b
↪→ B.A , B

b ′
↪→ ε }

A

a

a ′ b

b ′A.A

a
a ′ b

b ′

B.A

a
a ′ b

b ′

A.A.A B.A.A A.B.A B.B.A

· ·

16

Classes of Process Rewrite Systems

(1,G)-PRS classProcess Algebra

R = { A
a
↪→ A.A , B

a
↪→ A‖(B.C) , . . . }

(S,S)-PRS class PDA

R = { A.C
a
↪→ D , B.A.D

a
↪→ B.C , . . . }

(P,P)-PRS class Petri Nets

R = { A‖B
a
↪→ C‖B , B

a
↪→ A‖C , . . . }

17

PRS hierarchy, models

PRS
(G,G)-PRS

PAD
(S,G)-PRS

PAN
(P,G)-PRS

PDA
(S, S)-PRS

PA
(1,G)-PRS

PN
(P, P)-PRS

BPA
(1, S)-PRS

BPP
(1, P)-PRS

FS
(1, 1)-PRS

is strict w.r.t. strong bisimulation equivalence

18

Extensions of PRS and their Expressiveness

• state extended PRS (sePRS),

• weakly extended PRS (wPRS)

19

State Extended PRS (sePRS)

sePRS = PRS + finite-state control unit

e.g.
PDA = BPA + finite-state control unit

R = { pA
a
↪→ pA.A , pA

a ′
↪→ pε ,

pB
b
↪→ qB.B , qB

b ′
↪→ pB.B }

20

State Extended PRS-hierarchy

sePRS

sePAD PRS sePAN

PAD sePA PAN

sePDA=PDA=seBPA PA sePN=PN

seBPP=MSA

BPA BPP

seFS=FS

21

Motivation for Weak State Extension

4 (out of 5) new sePRS classes have a full Turing-power
⇓

sePRS are too strong
⇓

weakly extended PRS (wPRS) [Infinity 2003]

1-weak (or very weak) restriction from the automata theory
(i.e. no cycle except self-loops)

1-weak restriction: There is a partial ordering on states of the finite-
state unit such that the transition relation respects the ordering

22

Extended PRS-hierarchy

sePRS

wPRS

PRS

sePAD sePAN

wPAD wPAN

PAD PAN

sePA

wPA

{se, w}PDA=PDA=seBPA PA {se, w}PN=PN

seBPP=MSA

wBPA wBPP

BPA BPP

{se, w}FS=FS

23

Turing Powerfull Classes

sePRS

wPRS

PRS

sePAD sePAN

wPAD wPAN

PAD PAN

sePA

wPA

PDA PA PN

MSA

wBPA wBPP

BPA BPP

FS

24

Reachability Problem

Instance: (α,β)-(se-,w-)PRS system and two of its states s1, s2
Question: Is the state s2 reachable from s1

i.e. s1
∗

−→ s2?

s1 ? s2

25

Reachability Problem

sePRS

wPRS

PRS

sePAD [Mayr98] sePAN

wPAD wPAN

PAD PAN

sePA

wPA

PDA PA PN

MSA

wBPA wBPP

BPA BPP

FS

26

Reachability Problem [CONCUR’04]

sePRS

wPRS

PRS

sePAD sePAN

wPAD wPAN

PAD PAN

sePA

wPA

PDA PA PN

MSA

wBPA wBPP

BPA BPP

FS

27

Reachability problem

Theorem [Mayr1998]: Reachability problem is decidable for PRS.

Theorem: Reachability problem is decidable for wPRS.

Applications:

• model checking some of safety properties

• reachability for Hüttel and Srba’s replicative variant of Dolev and Yao’s
ping-pong protocols [Hüttel-Srba05]

• weak trace non-equivalence is semi-decidable for wPRS

28

Reachability HM Property

Instance: (α,β)-(se-,w-)PRS system with the initial state s0
and an HM formula ϕ

Question: s0 |= EFϕ?

HM formula: ψ = tt | ¬ψ | ψ1 ∧ψ2 | 〈a〉ψ
nesting of diamonds

Example:

s0 |= EF(〈a〉tt ∧ 〈b〉(〈a〉tt ∧ ¬〈b〉tt) ∧ ¬〈c〉tt)

?
a

b

/c

a

/
b

29

Reachability HM Properties

sePRS

wPRS

PRS

sePAD sePAN

wPAD wPAN
[Mayr98] PAD PAN

sePA

wPA

PDA PA PN [JM95]

MSA

wBPA wBPP

BPA BPP

FS

30

Reachability HM Properties [FSTTCS’05]

sePRS

wPRS

PRS

sePAD sePAN

wPAD wPAN
[Mayr98] PAD PAN

sePA

wPA

PDA PA PN [JM95]

MSA

wBPA wBPP

BPA BPP

FS

31

Reachability HM property

Theorem: Reachability HM property is decidable for wPRS.

Theorem [JKM01]: Decidability of reachability HM property =⇒ decidability
of strong bisimilarity with FS.

Corollary: Strong bisimilarity between wPRS and FS is decidable.

(an open question for PAN and PRS since 1998)

32

Decidability of EF logic

Instance: (α,β)-(se-,w-)PRS system with the initial state s0
and an EF formula ϕ

Question: s0 |= ϕ?

HM formula: ψ = tt | ¬ψ | ψ1 ∧ψ2 | 〈a〉ψ | EFψ
nesting of EF operators

Example:

s0 |= EF(〈a〉tt ∧ 〈b〉(〈a〉tt ∧ EF〈b〉tt) ∧ ¬〈c〉tt)

?
a

b

/c

a
? b

33

Decidability of EF Logic

sePRS

wPRS

PRS

sePAD sePAN

wPAD wPAN
[Mayr98] PAD PAN

sePA

wPA

PDA PA PN [Esp97]

MSA ⇓

wBPA wBPP

BPA BPP

FS

34

Decidability of EF Logic

sePRS

wPRS

PRS

sePAD sePAN
[BST06] wPAD wPAN
[Mayr98] PAD PAN

sePA

wPA

PDA PA PN [Esp97]

MSA ⇓

wBPA wBPP

BPA BPP

FS

35

Decidability of Linear Time Logic (LTL)

Instance: (α,β)-(se-,w-)PRS system with the initial state s0
and an LTL formula ϕ

Question: s0 |= ϕ?

LTL formula: ψ = tt | a | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψUψ
where a is an action

Example:

Xa next babacdabdca . . .
aUb until a . . . abacdab . . .

36

Decidability of LTL

sePRS

wPRS

PRS

sePAD sePAN

wPAD wPAN

PAD PAN

sePA

wPA
[BEM97] PDA PA PN [Esp94]

MSA

wBPA wBPP

BPA BPP

FS

37

Lamport Logic Definition

Linear Temporal Logic

ϕ ::= tt | a | ¬ϕ | ϕ∧ϕ | Xϕ | ϕUϕ �

Xa next babacdabdca . . .
aUb until a . . . abacdab . . .

Lamport Logic
ϕ ::= tt | a | ¬ϕ | ϕ∧ϕ | Fϕ �

Fϕ “eventually ϕ” tt Uϕ

Gϕ “always ϕ” ¬F¬ϕ

liveness: Fϕ “ϕ eventually happens”, safety: G¬ϕ “ϕ never happens”
38

Decidability of Lamport Logic

sePRS

wPRS

PRS

sePAD sePAN

wPAD wPAN

PAD PAN

sePA

wPA
[BEM97] PDA PA PN [Esp94]

MSA

wBPA wBPP

BPA BPP

FS

39

Decidability of Lamport Logic [FSTTCS’06]

sePRS

wPRS

PRS

sePAD sePAN

wPAD wPAN

PAD PAN

sePA

wPA
[BEM97] PDA PA PN [Esp94]

MSA

wBPA wBPP

BPA BPP

FS

40

Summary

Summary

• introducing more expressive wPRS classes

• reachability problem is decidable for wPRS

• reachability HM property is decidable for wPRS
bisimulation with FS is decidable for wPRS

• Lamport logic is decidable for wPRS

41

Corresponding papers

[INFINITY’03] - M. Křet́ınský, V. Řehák, and J. Strejček: On Extensions
of Process Rewrite Systems: Rewrite Systems with Weak Finite-
State Unit, in INFINITY 2003, ENTCS 98, pp. 75–88. Elsevier, 2004.

[CONCUR’04] - M. Křet́ınský, V. Řehák, and J. Strejček: Extended Pro-
cess Rewrite Systems: Expressiveness and Reachability, in CONCUR
2004, LNCS 3170, pp. 355–370. Springer, 2004.

[INFINITY’05] - M. Křet́ınský, V. Řehák, and J. Strejček: Refining the Un-
decidability Border of Weak Bisimilarity, in INFINITY 2005, ENTCS
149:1, pp.17-36, Elsevier, 2006.

[FSTTCS’05] - M. Křet́ınský, V. Řehák, and J. Strejček: Reachability of
Hennessy-Milner Properties for Weakly Extended PRS, in FSTTCS
2005, LNCS 3821, pp. 213–224. Springer, 2005.

[FSTTCS’06] - L. Bozzelli, M. Křet́ınský, V. Řehák, and J. Strejček: On
Decidability of LTL Model Checking for Process Rewrite Systems,
in FSTTCS 2006, LNCS 4337, pp. 248–259. Springer, 2006.

42

