Model-Checking Large Finite State Systems and Beyond

Luboš Brim & Mojmír Křetínský Masaryk University Brno

Part II (Beyond FS): Infinite state systems

Mojmír Křetínský

A joint work with Vojtěch Řehák and Jan Strejček

Motivation

• modelling (some features of) current SW, e.g. programs with unbounded control structure (unbounded depth of recursive call, dynamic creation of concurrent process) and their synchronization

need of infinite-state systems

 \downarrow

- examples of standard formalisms:
 - process algebras: BPA, BPP, PA
 - Petri nets (PN)
 - pushdown systems (PDA), recursive state machines
 - process rewrite systems (PRS)
- Goal: find a balance between expressiveness and decidability
- we study extensions of PRS improving expressiveness and keeping decidability

Outline

- Process rewrite system (PRS) and program modeling
 - rewriting concepts in modeling
 - process rewrite system (PRS), hierarchy
 - subclasses of PRS and program modeling
- Extensions of PRS and their expressiveness
 - state extended PRS (sePRS)
 - weakly extended PRS (wPRS)
- Decidability results and their applications
 - Reachability problem is decidable for wPRS
 - Reachability Hennessy-Milner property is decidable for wPRS
 - Model checking problem is decidable for wPRS and Lamport logic

Process rewrite system (PRS)

- rewriting concepts in modeling
- process rewrite system (PRS) [Mayr98]
- subclasses of PRS and program modeling

PRS - An Intuitive Introduction (FS)

Rewrite systems (e.g. grammars) and LTS (e.g. automata state graphs)

(Process) rewrite systems as generators of process **behaviours** (Labelled transition systems)

interpret grammar rules (generating strings) as rules for generating behaviours. Type 3 rules

• a rule $A \longrightarrow \alpha B$ becomes a rule

 $A \xrightarrow{a} B$

A process A can perform an action a and become a process B

 \bullet a rule $A \longrightarrow a$ becomes a rule

 $A \xrightarrow{a} \epsilon$

A process A can perform an action a and terminate

• can model nondeterministic finite state systems

PRS - An Intuitive Introduction: context-free rules

A context-free rule in GNF $A \longrightarrow aBC$ should become $A \xrightarrow{a} BC$ How to interpret concatenation (juxtaposition) BC ?

To model **sequential** and/or **parallel** compositions of systems we make use of

sequential operator '.' (rather than Unix like ';', e.g. xterm; xterm;)
'.' is associative

and

• parallel operator '||' (rather than Unix like '&', e.g. xterm& xterm&) '||' is associative and commutative

PRS - An Intuitive Introduction: context-free

A sequential (context-free) rule

 $A \xrightarrow{a} B.C$

- \bullet a process A can perform an action α and become a sequential composition of B and C
- in a state B.C no C-rule is applicable (i.e. C cannot move) until B does not terminate (left derivations only prefix rewriting)
- we can model recursive procedures

A parallel (context-free) rule

 $A \stackrel{a}{\longrightarrow} B || C$

- \bullet a process A can perform an action α and become a parallel composition of B and C
- in a state $B \| C$ both C-rules and B-rules can be applied
- can model dynamic creation of (asynchronous) parallel processes

PRS - An Intuitive Introduction: context-free

Type 2 (context-free) sequential and parallel rules:

 $A \xrightarrow{a} (B||C).D$

cobegin - coend section, fork - join

PRS - An Intuitive Introduction: other rules

Type 0 ("context-sensitive") rules:

• parallel composition only (multiset rewriting)

 $A||B \stackrel{\alpha}{\longrightarrow} C||D$

communication and synchronization

• sequential composition only (prefix rewriting)

$C.D \stackrel{\mathfrak{a}}{\longrightarrow} E$

value passing, recursive calls returning values over finite data domains

• other combinations are useful as well

Rewriting models (of control flow graphs) of programs

Programs with

- procedures/methods and recursion, and/or
- concurrency and communication (processes/threads, cobegin-coend sections)

are "compiled" (abstracted) into simpler and formal models.

We use rewriting concepts, i.e. we model:

- program states as terms (states of LTS),
- program instructions as term-rewriting rules (generate transitions in LTS), and
- program executions as sequences of rewriting steps (paths in LTS).

Process Terms

Process terms are expressions of the form

 $t ::= \varepsilon | X | t.t | t||t$

where

- ε is an **empty term**
- X ranges over set {A, B, C, ...} of **process constants**
- "." is associative **sequential** operator
- "||" is associative and commutative **parallel** operator

e.g.

$$\varepsilon \|A = A\|\varepsilon = A = A.\varepsilon = \varepsilon.A$$
$$A\|(B\|C) = (A\|B)\|C = C\|(A\|B)$$
$$A.(B.C) = (A.B).C \neq C.(A.B)$$

Process Rewrite System (PRS)

PRS – a finite set of rewrite rules and an initial term $R = \{ A.B \stackrel{a}{\hookrightarrow} C || D , B \stackrel{b}{\hookrightarrow} A.B \\
C \stackrel{c}{\hookrightarrow} \varepsilon , E \stackrel{d}{\hookrightarrow} F \}$

LTS is induced by R starting in the initial term (state) $B \parallel E$

Classes of Process Terms

We define these classes of process terms:

"1" process constants, e.g. A

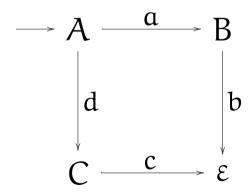
"S" only sequential composition, e.g. A.B.C

"P" only parallel composition, e.g. $A \|B\|C$

"G" general terms, e.g. A.(B||(C.D))

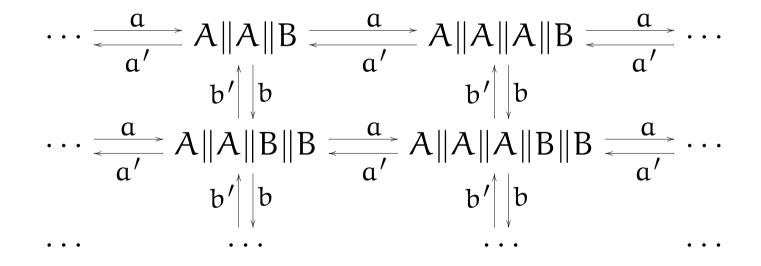
(1,1)-PRS class Finite-state Systems

$$\begin{split} \mathsf{R} &= \{ \begin{array}{ccc} \mathsf{A} & \overset{\mathfrak{a}}{\hookrightarrow} & \mathsf{B} \end{array}, & \begin{array}{ccc} \mathsf{B} & \overset{\mathfrak{b}}{\hookrightarrow} & \varepsilon \end{array}, \\ \mathsf{A} & \overset{\mathfrak{d}}{\hookrightarrow} & \mathsf{C} \end{array}, & \begin{array}{ccc} \mathsf{C} & \overset{\mathfrak{c}}{\hookrightarrow} & \varepsilon \end{array} \} \end{split}$$



(1,P)-PRS class Basic Parallel Processes

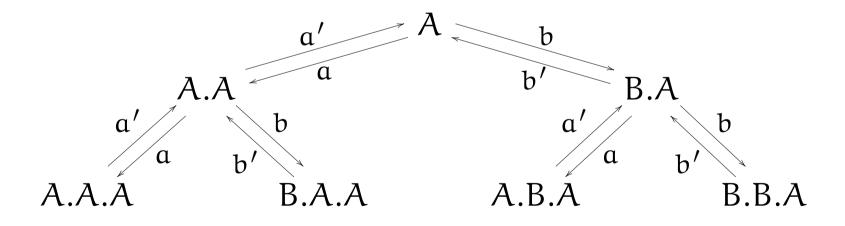
$$\begin{split} \mathsf{R} &= \{ \begin{array}{ccc} A \ \stackrel{a}{\hookrightarrow} \ A \| A \ , & A \ \stackrel{a'}{\hookrightarrow} \ \epsilon \ , \\ & B \ \stackrel{b}{\hookrightarrow} \ B \| B \ , & B \ \stackrel{b'}{\hookrightarrow} \ \epsilon \ \} \end{split}$$



15

(1,S)-PRS class Basic Process Algebra

$$R = \{ A \stackrel{a}{\hookrightarrow} A.A , \qquad B \stackrel{a}{\hookrightarrow} A.B , \qquad A \stackrel{a'}{\hookrightarrow} \varepsilon , \\ B \stackrel{b}{\hookrightarrow} B.B , \qquad A \stackrel{b}{\hookrightarrow} B.A , \qquad B \stackrel{b'}{\hookrightarrow} \varepsilon \}$$



....

(1,G)-PRS class Process Algebra $R = \{ A \xrightarrow{a} A.A , B \xrightarrow{a} A \| (B.C) , ... \}$

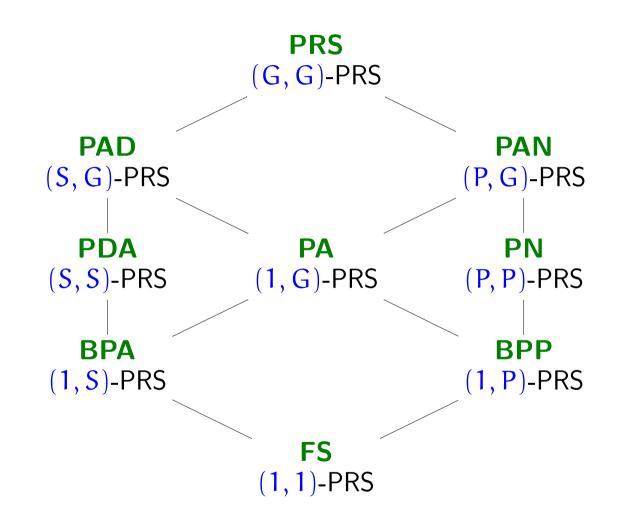
(S,S)-PRS class PDA

$$R = \{ A.C \stackrel{a}{\hookrightarrow} D , \qquad B.A.D \stackrel{a}{\hookrightarrow} B.C , ... \}$$

(P,P)-PRS class Petri Nets

$$R = \{ A \| B \stackrel{a}{\hookrightarrow} C \| B , \qquad B \stackrel{a}{\hookrightarrow} A \| C , ... \}$$

PRS hierarchy, models



is strict w.r.t. strong bisimulation equivalence

Extensions of PRS and their Expressiveness

- state extended PRS (sePRS),
- weakly extended PRS (wPRS)

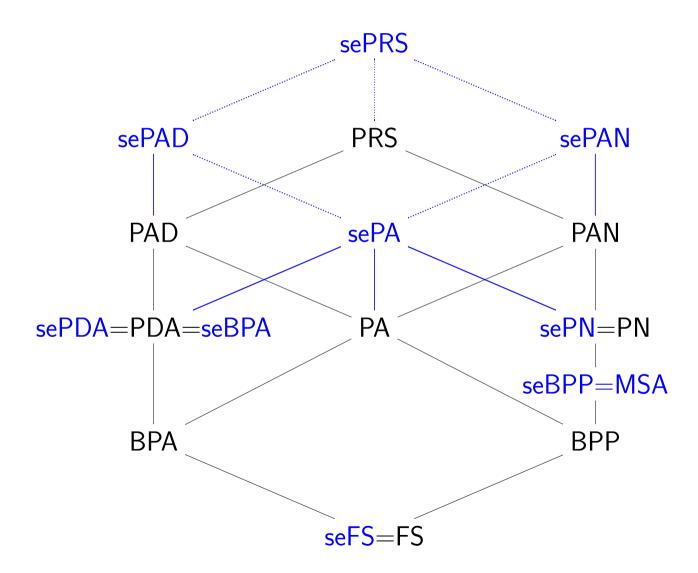
State Extended PRS (sePRS)

sePRS = PRS + finite-state control unit

e.g. PDA = BPA + finite-state control unit

$$\begin{split} \mathsf{R} &= \{ \ \mathsf{p} \mathsf{A} \ \stackrel{a}{\hookrightarrow} \ \mathsf{p} \mathsf{A}.\mathsf{A} \ , \qquad \mathsf{p} \mathsf{A} \ \stackrel{a'}{\hookrightarrow} \ \mathsf{p} \varepsilon \quad , \\ \mathsf{p} \mathsf{B} \ \stackrel{b}{\hookrightarrow} \ \mathsf{q} \mathsf{B}.\mathsf{B} \ , \qquad \mathsf{q} \mathsf{B} \ \stackrel{b'}{\hookrightarrow} \ \mathsf{p} \mathsf{B}.\mathsf{B} \ \} \end{split}$$

State Extended PRS-hierarchy



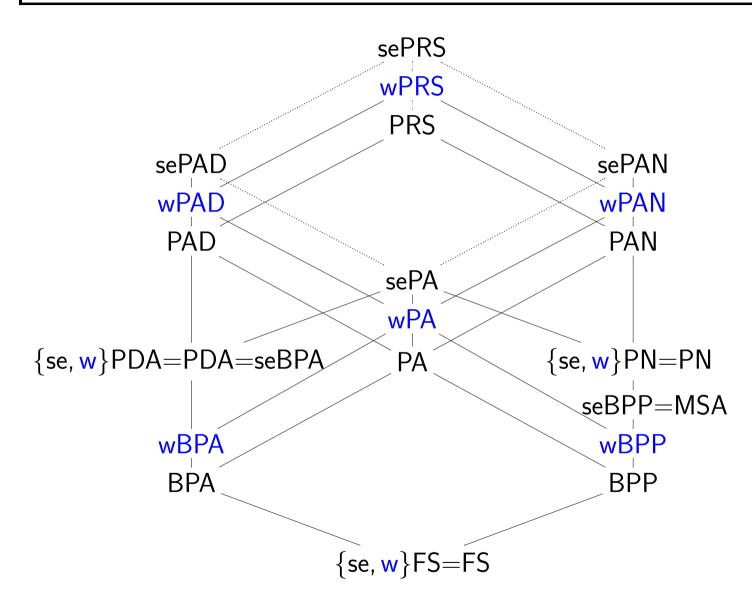
Motivation for Weak State Extension

4 (out of 5) new sePRS classes have a full Turing-power $\downarrow\downarrow$ sePRS are too strong $\downarrow\downarrow$ weakly extended PRS (wPRS) [Infinity 2003]

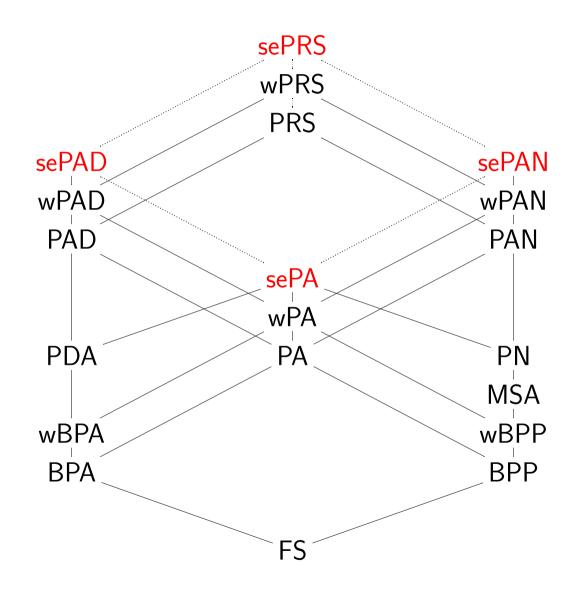
1-weak (or very weak) restriction from the automata theory (i.e. no cycle except self-loops)

1-weak restriction: There is a partial ordering on states of the finitestate unit such that the transition relation respects the ordering

Extended PRS-hierarchy

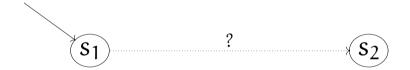


Turing Powerfull Classes

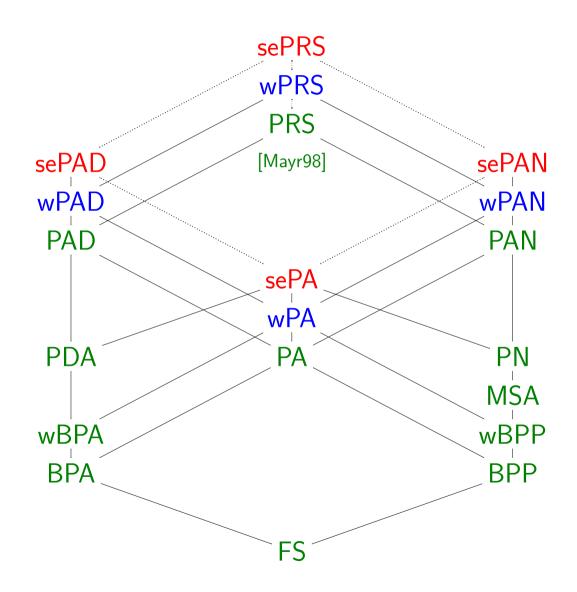


Reachability Problem

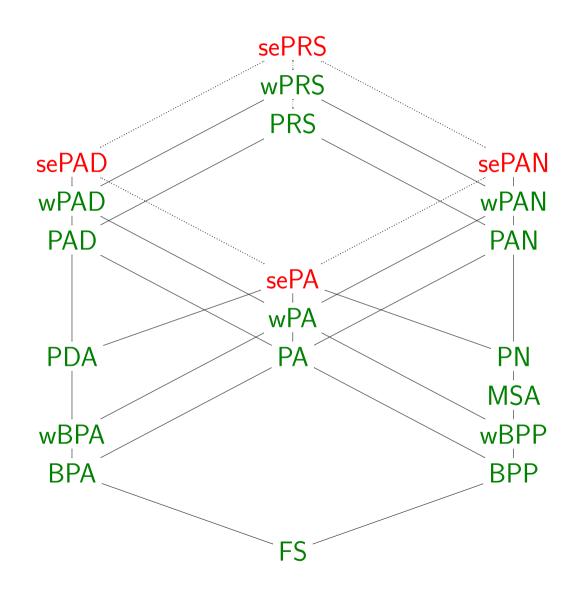
Instance: (α, β) -(se-,w-)PRS system and two of its states s_1, s_2 **Question:** Is the state s_2 reachable from s_1 i.e. $s_1 \xrightarrow{*} s_2$?



Reachability Problem



Reachability Problem [CONCUR'04]



Reachability problem

Theorem [Mayr1998]: Reachability problem is decidable for PRS.

Theorem: Reachability problem is decidable for wPRS.

Applications:

- model checking some of safety properties
- reachability for Hüttel and Srba's replicative variant of Dolev and Yao's ping-pong protocols [Hüttel-Srba05]
- weak trace non-equivalence is semi-decidable for wPRS

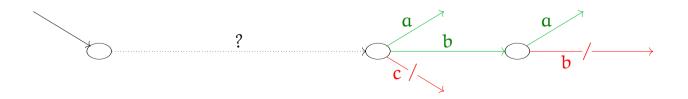
Reachability HM Property

Instance: (α, β) -(se-,w-)PRS system with the initial state s_0 and an HM formula ϕ **Question:** $s_0 \models \mathsf{EF}\phi$?

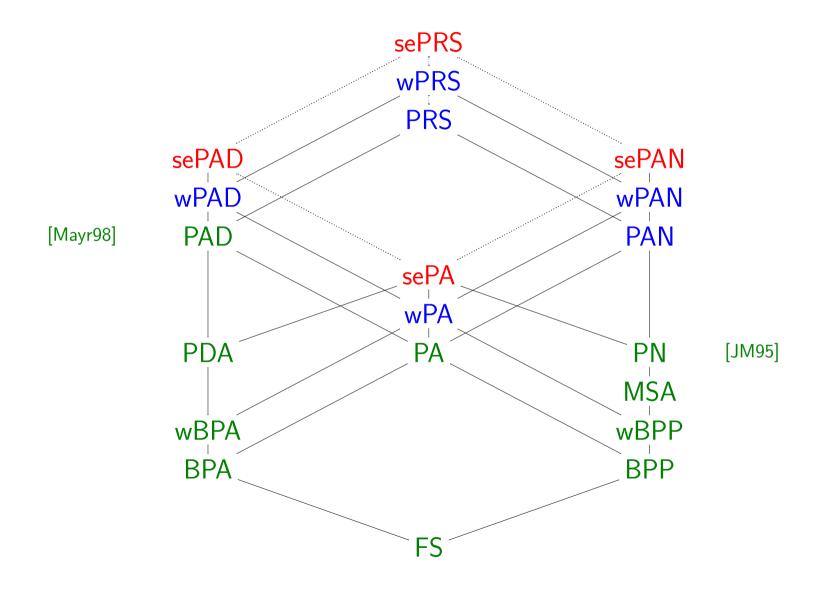
HM formula: $\psi = tt | \neg \psi | \psi_1 \land \psi_2 | \langle a \rangle \psi$ nesting of diamonds

Example:

 $s_{0} \models \mathsf{EF}(\ \langle a \rangle \mathit{tt} \ \land \ \langle b \rangle (\langle a \rangle \mathit{tt} \ \land \ \neg \langle b \rangle \mathit{tt}) \ \land \ \neg \langle c \rangle \mathit{tt} \)$

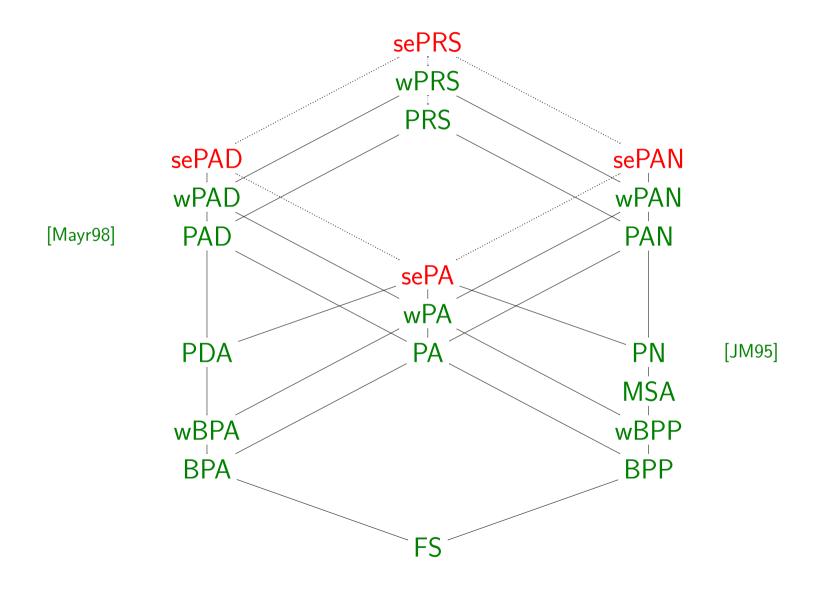


Reachability HM Properties



30

Reachability HM Properties [FSTTCS'05]



31

Reachability HM property

Theorem: Reachability HM property is decidable for wPRS.

Theorem [JKM01]: Decidability of reachability HM property \implies decidability of strong bisimilarity with FS.

Corollary: Strong bisimilarity between wPRS and FS is decidable.

(an open question for PAN and PRS since 1998)

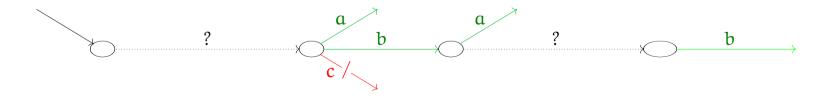
Decidability of EF logic

Instance: (α, β) -(se-,w-)PRS system with the initial state s_0 and an EF formula ϕ **Question:** $s_0 \models \phi$?

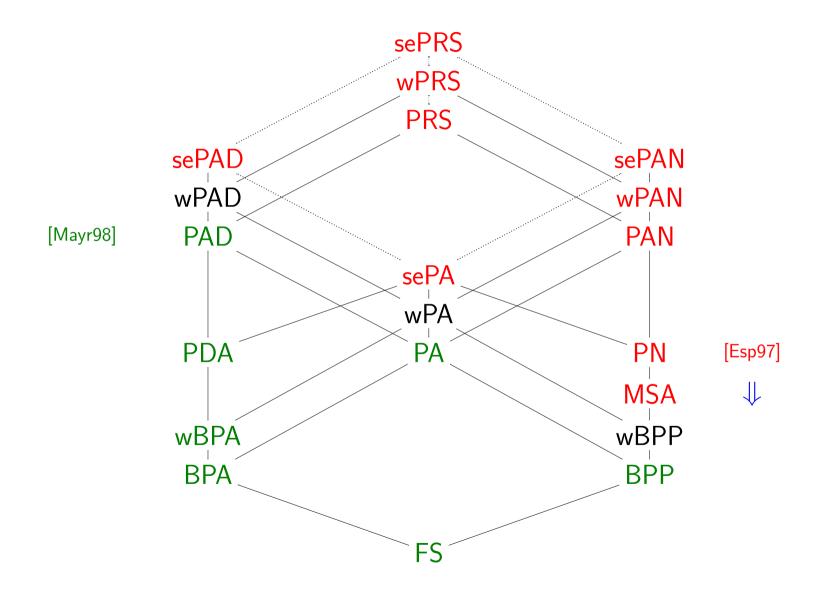
HM formula: $\psi = tt | \neg \psi | \psi_1 \land \psi_2 | \langle a \rangle \psi |$ EF ψ nesting of EF operators

Example:

 $s_{0} \models \mathsf{EF}(\langle a \rangle tt \land \langle b \rangle (\langle a \rangle tt \land \mathsf{EF} \langle b \rangle tt) \land \neg \langle c \rangle tt)$

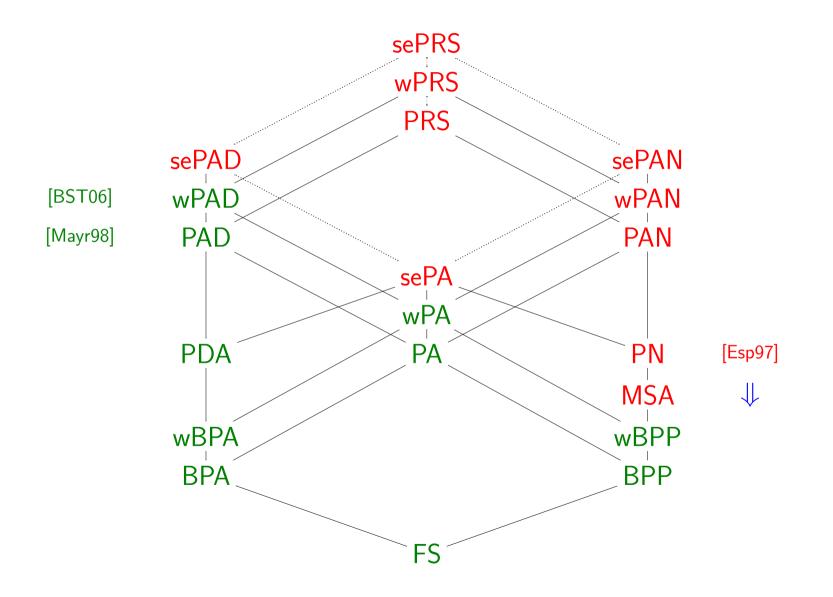


Decidability of EF Logic



34

Decidability of EF Logic



Decidability of Linear Time Logic (LTL)

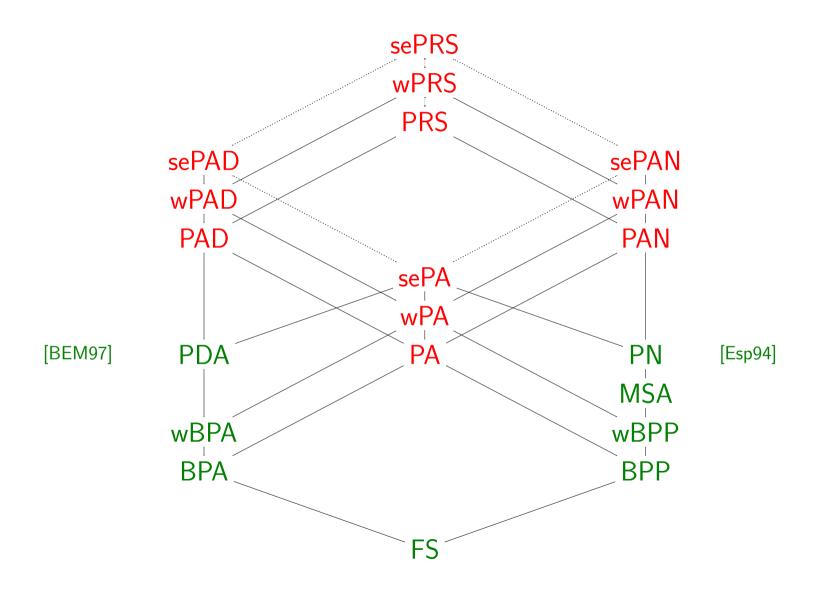
Instance: (α, β) -(se-,w-)PRS system with the initial state s_0 and an LTL formula ϕ **Question:** $s_0 \models \phi$?

LTL formula: $\psi = tt | a | \neg \psi | \psi_1 \land \psi_2 | X\psi | \psi U\psi$ where a is an action

Example:

Xa next babacdabdca... aUb until a...abacdab...

Decidability of LTL



37

Lamport Logic Definition

Linear Temporal Logic

$$\varphi ::= tt \mid \alpha \mid \neg \varphi \mid \varphi \land \varphi \mid X\varphi \mid \varphi \cup \varphi.$$

Xa	next	babacdabdca
aUb	until	aabacdab

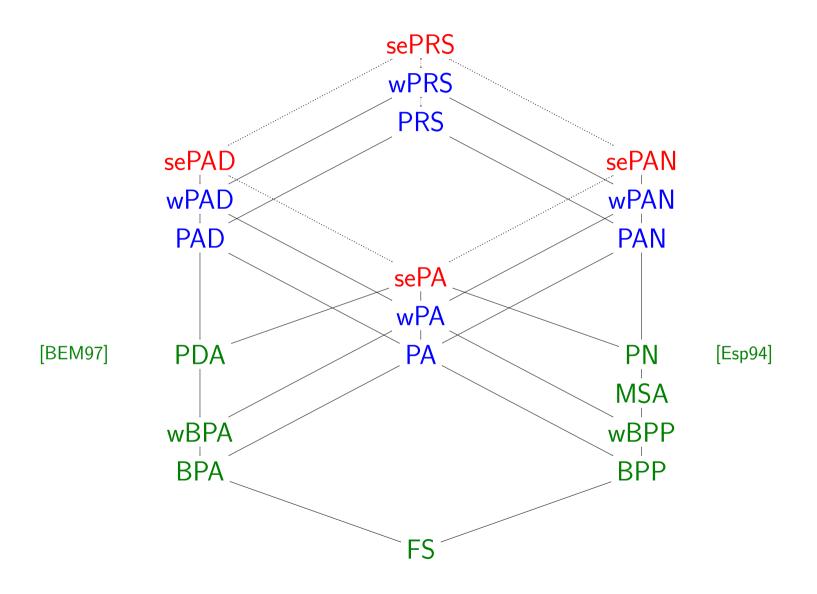
Lamport Logic

$$\varphi ::= tt \mid a \mid \neg \varphi \mid \varphi \land \varphi \mid F\varphi.$$

Fφ"eventually
$$φ"$$
 $tt U φ$ Gφ"always $φ"$ $\neg F \neg φ$

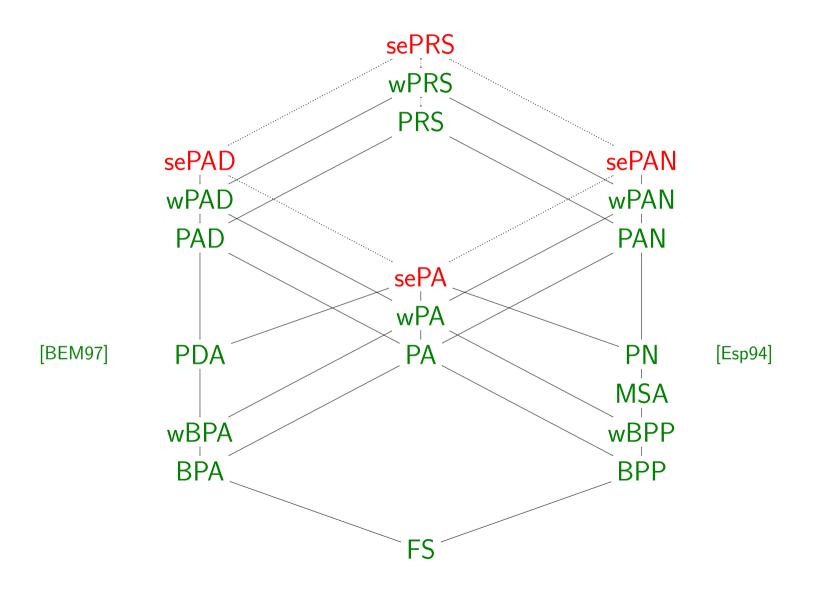
liveness: $F\phi$ " ϕ eventually happens", safety: $G\neg\phi$ " ϕ never happens"

Decidability of Lamport Logic



39

Decidability of Lamport Logic [FSTTCS'06]



40

Summary

Summary

- introducing more expressive wPRS classes
- reachability problem is decidable for wPRS
- reachability HM property is decidable for wPRS bisimulation with FS is decidable for wPRS
- Lamport logic is decidable for wPRS

Corresponding papers

[INFINITY'03] - M. Křetínský, V. Řehák, and J. Strejček: On Extensions of Process Rewrite Systems: Rewrite Systems with Weak Finite-State Unit, in INFINITY 2003, ENTCS 98, pp. 75–88. Elsevier, 2004.

- [CONCUR'04] M. Křetínský, V. Řehák, and J. Strejček: Extended Process Rewrite Systems: Expressiveness and Reachability, in CONCUR 2004, LNCS 3170, pp. 355–370. Springer, 2004.
- [INFINITY'05] M. Křetínský, V. Řehák, and J. Strejček: Refining the Undecidability Border of Weak Bisimilarity, in INFINITY 2005, ENTCS 149:1, pp.17-36, Elsevier, 2006.
- [FSTTCS'05] M. Křetínský, V. Řehák, and J. Strejček: Reachability of Hennessy-Milner Properties for Weakly Extended PRS, in FSTTCS 2005, LNCS 3821, pp. 213–224. Springer, 2005.
- [FSTTCS'06] L. Bozzelli, M. Křetínský, V. Řehák, and J. Strejček: On Decidability of LTL Model Checking for Process Rewrite Systems, in FSTTCS 2006, LNCS 4337, pp. 248–259. Springer, 2006.