Interaction and Realizability

Manfred Broy

Technische Universität München Institut für Informatik D-80290 Munich, Germany

Motivation

- A reference model for generalized computation
 - Interaction
 - ♦ Concurrency
 - ♦ Real time
- Properties of the model
- Computability

The model: functions/relations on streams

- Causality between input and output streams
- Realizability of single output histories for given input histories
- The role of non-realizable output in specific system contexts and for composition
- Relating non-realizable behaviors to state machines
- The concept of interactive computation and computability

Original motivation:

basis for model driven software & systems engineering

Types, Streams, Channels and Histories

- A type is a name for a set of data elements.
- Let TYPE be the set of all types.
- With each type $T \in TYPE$ we associate a set of data elements, the *carrier set* for T.
- We use the following notation:
- M^* denotes the set of finite sequences over M including the <code>empty</code> sequence $\langle\rangle$,
- M^{∞} denotes the set of infinite sequences over M (that are represented by the total mappings IN₊ → M were IN₊ = IN \ {0}).
- By

$$M^{\omega} = M^* \cup M^{\infty}$$

we denote the set of streams of elements taken from the set M.

- $\langle\rangle$ denotes the empty stream m.
- The set of streams has a rich algebraic and topological structure.

πп

Concatenation

We introduce concatenation ^ as an operator

 $\hat{}: M^{\omega} \times M^{\omega} \rightarrow M^{\omega}$

- On finite streams x concatenation is defined as usual on finite sequences.
- We may see finite streams as partial functions $IN_+ \rightarrow M$ and infinite streams as total functions $IN_+ \rightarrow M$.
- For infinite streams r, s: $IN_+ \rightarrow M$ we define:

$$s^{r}x = s$$

$$s^{r} = s$$

$$\langle x_{1} \dots x_{n} \rangle^{r} \langle s_{1} \dots \rangle = \langle x_{1} \dots x_{n} s_{1} \dots \rangle$$

- Streams are used to represent histories of communications of data messages transmitted within a time frame.
- Given a message set M of type T a *timed stream* is a function

s:
$$IN_+ \rightarrow M^*$$

• For each time t the sequence s(t) denotes the sequence of messages communicated at time t in the stream s.

Notation

- $\langle \rangle$ empty sequence or empty stream,
- $\langle m \rangle$ one-element sequence containing m as its only element,
- x.t t-th element of the stream x,
- $x\downarrow t$ prefix of length t of the stream x,
- #x number of elements in x
- \overline{x} finite or infinite stream that is the result of concatenating all sequences in the timed stream x. Note that \overline{x} is finite if x carries only a finite number of nonempty sequences.

πп

Basic system model

6

Basic Model

Timed Streams: Semantic Model for Black-Box-Behavior

The Basic Behaviour Model: Streams and Functions

Cset of channelsType: $C \rightarrow TYPE$ type assignment $x: C \rightarrow (N \{0\} \rightarrow M^*)$ channel history for messages of type M \vec{C} set of channel histories for channels in C

Channel: Identifier of Type stream

 $I = \{ x_1, x_2, ... \} \text{ set of typed input channels} \\O = \{ y_1, y_2, ... \} \text{ set of typed output channels}$

πп

Causality

Component interface

Causal functions have unique fixpoints:

Given a function:

$$f: \vec{I} \rightarrow \vec{I}$$

then there exists a unique fixpoint $y \in \vec{I}$ with

f(y) = y

Time abstractions are prefix monotonic

Given a function:

$$f: \vec{I} \rightarrow \vec{O}$$

a function

$$\overline{f}: (I \to M^{(0)}) \to (O \to M^{(0)})$$

is called time abstraction of f if for all $x \in \overline{I}$ we have
 $\overline{f}(\overline{x}) = \overline{f(x)}$
If f is causal then \overline{f} (if it exists) is prefix monotonic

Channel: Identifier of Type stream

 $I = \{ x_1, x_2, ... \} \text{ set of typed input channels} \\ O = \{ y_1, y_2, ... \} \text{ set of typed output channels}$

Causality

$x \downarrow t = z \downarrow t \Rightarrow \{y \downarrow t+1: y \in F(x)\} = \{y \downarrow t+1: y \in F(z)\}$

 $x \downarrow t$ prefix of history x with t finite sequences

Functions with this propertiy are called strongly causal.

Component interface

ТΠ

Either all result sets are empty or none

```
Given a function:

F: \vec{I} \rightarrow \mathscr{D}(\vec{O})
then if

F(z) = \emptyset
for some z \in \vec{I}, then

F(x) = \emptyset
for all x \in \vec{I}.
```

Then F is called paradoxical.

An I/O-behavior F is called *realizable*, if there exists a strongly causal total function

f:
$$\vec{I} \rightarrow \vec{O}$$

such that we have:

$$\forall x \in \vec{I} : f(x) \in F(x)$$

f is called a *realization* of F.

By [F] we denote the set of all realizations of F.

An output history $y \in F(x)$ is called *realizable* for an interactive I/O-behavior F with input x, if there exists a realization $f \in [F]$ with

y = f(x).

There are causal non-paradox behaviours that are not realizable

```
F(x) = \{y: x \neq y\}
```

Proof: Assume F is realizable! Then there exist f with $f(x) \in F(x)$ for all x. F has a fixpoint y with y = f(y). We get $y = f(y) \in F(x)$ But by the definition of F: $y \notin F(x)$

Example: Component interface specification

State Machines with Input and Output

A state machine (Δ , Λ) with input and output according to

- the set I of input channels and
- the set O of output channels

is given by

- a state space Σ , which represents a set of states,
- a set $\Lambda \subseteq \Sigma$ of initial states as well as
- a state transition function

$$\Delta: (\Sigma \times (I \to M^*)) \to \mathscr{D} (\Sigma \times (O \to M^*))$$

For each

- state $\sigma \in \Sigma$ and
- each valuation α : I \rightarrow M* of the input channels in I by sequences of messages we obtain by every pair

$$(\sigma', \beta) \in \Delta(\sigma, \alpha)$$

a successor state σ' and a valuation $\beta: O \rightarrow M^*$ of the output channels consisting of the sequences produced by the state transition.

Such state machines are also called *Mealy machines*.

πп

Classes of state machines

- A state machine (Δ, Λ) is called
- *deterministic*, if, for all states $\sigma \in \Sigma$ and input α , $\Delta(\sigma, \alpha)$ and Λ are sets with at most one element.
- *total*, if for all states $\sigma \in \Sigma$ and all inputs α the sets $\Delta(\sigma, \alpha)$ and Λ are not empty; otherwise the machine (Δ, Λ) is called *partial*,
- a (generalized) *Moore machine*, if its output depends only on the state and not on the actual input of the machine. Then the following equation holds for all input sequences α , α' and output sequences β , and all states σ :

 $\exists \sigma' \in \Sigma: (\sigma', \beta) \in \Delta(\sigma, \alpha) \Leftrightarrow \exists \sigma' \in \Sigma: (\sigma', \beta) \in \Delta(\sigma, \alpha')$

πп

• A way to characterize a Moore machine is to require functions

out: $\Sigma \rightarrow \mathscr{D}(O \rightarrow M^*)$ next: $\Sigma \times (I \rightarrow M^*) \times (O \rightarrow M^*) \rightarrow \mathscr{D}(\Sigma)$

such that

 $\Delta(\sigma, \alpha) = \{ (\sigma', \beta) : \beta \in out(\sigma) \land \sigma' \in next(\sigma, \alpha, \beta) \}$

• Subtle point: the choice of the output β does not depend on the input α , but the choice of the successor state σ' may depend both on the input α and on the choice of the output β . We therefore require that for each $\beta \in \text{out}(\sigma)$ there exists a successor state:

 $\forall \beta \in out(\sigma): \exists \sigma' \in \Sigma: \sigma' \in next(\sigma, \alpha, \beta)$

 By SM[I → O] we denote the set of all total Moore machines with input channels I and output channels O. By DSM[I → O] we denote the set of deterministic total Moore machines.

Computations of State Machines

- a stream x of input : x_1 , x_2 , ...
- a stream y of output : y_1 , y_2 , ...
- a stream s of states : σ_0 , σ_1 , ...
- The computation is generated given the input stream x and the initial state σ_0 by choosing step by step

 $(\sigma_{i+1}, \gamma_{i+1}) \in \Delta(\sigma_i, \chi_{i+1})$

A computation for a state machine (Δ, Λ) and an input history x is given by a sequence of states
 {σ_t: t ∈ IN }

and an output history y such that for all times $t \in IN$:

 $(\sigma_{t+1}, y.t+1) \in \Delta(\sigma_t, x.t+1) \text{ and } \sigma_0 \in \Lambda$

- The history y is called an *output* of the computation of the state machine (Δ, Λ) for input x and initial state σ_0 .
- The machine computes the output history y for the input history x and initial state σ_0 .

Refinement and Equivalence of State Machines

- Two state machines are called (*observably*) *equivalent* if for each input history their sets of output histories coincide.
- A state machine is called *equivalent to a behavior* F, if for each input history x the state machine computes exactly the output histories in the set F(x).
- A state machine (Δ_2, Λ_2) with transition function

 $\Delta_2: (\Sigma_2 \times (I \to M^*)) \to \mathcal{D} (\Sigma_2 \times (O \to M^*))$

is called a *transition refinement* or a *simulation* of a state machine (Δ_1 , Λ_1) with the transition function

 $\Delta_1: (\Sigma_1 \times (I \to M^*)) \to \mathscr{D} (\Sigma_1 \times (O \to M^*))$

if there is a mapping $\rho: \Sigma_2 \to \Sigma_1$ such that for all states $\sigma \in \Sigma_2$, and all input $\alpha \in I \to M^*$ we have:

 $\{(\rho(\sigma'), \beta): (\sigma', \beta) \in \Delta_2(\sigma, \alpha)\} \subseteq \Delta_1(\rho(\sigma), \alpha), \qquad \{\rho(\sigma): \sigma \in \Lambda_2\} \subseteq \Lambda_1$

- A special case is given if ρ is the identity; then the equation simplifies to:

$$\Delta_2(\sigma, \alpha) \subseteq \Delta_1(\sigma, \alpha) \land \Lambda_2 \subseteq \Lambda_1$$

ПΠ

Nondeterministic versus deterministic computations

Theorem:

Every computation of a total non-deterministic Moore machine is also a computation of a total deterministic Moore machine.

Refinements

• To capture refinements we need the more general state space with $\Sigma_2 = (\Sigma_1 \times IN)$

where for the Moore machine (Δ_2, Λ) we only require:

 $\Delta_2((\sigma, t), \alpha) = \{((\sigma', t+1), \beta)\} \text{ where } (\sigma', \beta) \in \Delta_1(\sigma, \alpha)$

- Each such state machine $(\Delta_{2,} \{ (\sigma_0, 0) \})$ with $\sigma_0 \in \Lambda_1$ is called a *deterministic enhanced refinement* of state machine (Δ_1, Λ_1) .
- Consider two state machines:

 $\Delta_1, \Delta_2: \Sigma \times (I \to M^*) \to \mathcal{D} \left(\Sigma \times (O \to M^*) \right)$

where Δ_1 produces arbitrary output and arbitrary successor states. Δ_1 is trivially a Moore machine.

- Every machine Δ_2 in DSM[I \rightarrow O] is a refinement of Δ_1 . In fact, every Mealy machine Δ_2 is a refinement of Δ_1 , too.
- To make sure that we obtain Moore machines in the construction above we have to strengthen the formula slightly as follows:

 $\forall \alpha: \Delta_2((\sigma, t), \alpha) = \{((\sigma', t+1), \beta)\} \quad \text{where} \quad (\sigma', \beta) \in \Delta_1(\sigma, \alpha)$

• Since β does not depend on α in the original machine, this formula can be fulfilled for each output β .

πп

Combination of State Machines

 We can also combine sets of state machines into one state machine. Let a set of state machines be given (where K is an arbitrary set of names for state machines)

 $\{(\Delta_k, \Lambda_k): k \in K\}$ with $\Delta_k: (\Sigma_k \times (I \to M^*)) \to \mathscr{O}(\Sigma_k \times (O \to M^*))$

We define the composed state machine

$$(\Delta, \Lambda) = \coprod_{k \in \mathsf{K}} (\Delta_k, \Lambda_k)$$

as follows (let w.l.o.g. all state spaces Σ_k for the machines (Δ_k , Λ_k), with $k \in K$ be pairwise disjoint):

$$\Lambda = \bigcup_{k \in \mathsf{K}} \Lambda_k$$

$$\Delta(\sigma, \alpha) = \Delta_k(\sigma, \alpha) \text{ for } \sigma \in \Sigma_k$$

Theorem:

Every total Moore machine is equivalent to (a state machine composed of) a set of deterministic Moore machines.

Theorem:

Every total deterministic Moore machine (Δ , Λ) with the transition function

$$\Delta: (\Sigma \times (I \to M^*)) \to \mathscr{D} (\Sigma \times (O \to M^*))$$

defines a deterministic behavior

$$F^{\Delta}_{\sigma}:\,\vec{\mathrm{I}}\twoheadrightarrow \wp(\vec{\mathrm{O}})$$

for every state $\sigma \in \Sigma$ where for each input x the output of the state machine (Δ, Λ) is the history y where $F_{\sigma}^{\Delta}(x) = \{y\}$. The function F_{σ}^{Δ} is strongly causal.

State machines define realizable behaviours

We define an operator along the lines of the proof of the theorem above

$$\Psi: \mathrm{DSM}[\mathbf{I} \triangleright \mathbf{O}] \rightarrow (\vec{\mathbf{I}} \rightarrow \wp(\vec{\mathbf{O}}))$$

that maps every total deterministic Moore machine onto its interface abstraction

$$\Psi((\Delta, \{\sigma 0\})) = F_{\sigma 0}^{\Delta}$$

Corollary:

Every total Moore machine can be represented by a fully realizable behavior.

Behaviours can be represented by state machines

Theorem:

Every deterministic behavior

$$F: \quad \vec{I} \to \mathscr{D}(\vec{O})$$

defines a total dete rministic Moore machine (Δ , Λ) with a transition function

$$\Delta: (\Sigma \times (I \to M^*)) \to \mathscr{O}(\Sigma \times (O \to M^*)).$$

Corollary:

Every fully realizable interactive behavior can be represented by a total Moore machine.

A computation is carried out for each time interval $t \in IN$ in two steps:

- (1) The input x.t is provided to the system,
- (2) The output y.t+1 is selected. It must and can depend only on the initial state, the input till time interval t and the output, which is produced so far, till time interval t.
- To model interactive computations we assume for each initial state of the considered system a function:

g: {z: $I \cup O \rightarrow (M^*)^t$: $t \in IN$ } × ($I \rightarrow M^*$) $\rightarrow \mathscr{D}(O \rightarrow M^*)$

such that for given input history x we define the output history y and the state of the computation z inductively, where

 $z: IN \rightarrow (I \cup O \rightarrow (M^*)^t)$ y.t+1 \in g(z.t) where (z.t) | I = x \ t and (z.t) | O = y \ t

- The function g is called an *interactive computation strategy*.
- By Out(g)(x) we denote the set of output histories y that can be constructed by the computation strategy g in this way.

πп

Correct strategies

- The computation strategy g is called *correct* for the interactive behavior F if Out(g)(x) ⊆ F(x);
- it is called *deterministic* if Out(g)(x) is always a one element set.

For interactive computations

the following observations about strategies g hold:

- As long as g(z) is never empty, Out(g) is never empty.
- Each strategy can be refined into a set of deterministic strategies G where
 - ♦ for each g' \in G we require that g'(z) \in g(z) holds and g'(x) contains exactly one element,
 - A deterministic strategy is equivalent to a deterministic behavior,
 - \diamond we get g(x) = {g'(x): g' \in G}.

 Assume we say that there is a winning strategy for the partial computation

$$z: I \cup O \rightarrow (M^*)^t$$

for some time $t \in IN$ (which represents a partially played game) if there is a strategy g with $g(x) \in F(x)$ for all input histories x with $z | I = x \downarrow t$ that finds some $y \in F(x)$ such that $z | O = y \downarrow t$, where $g(x) = \{y\}$.

• If for a partial computation z every $y \in F(x)$ with $z \mid O = y$ is not realizable then there does not exist a winning strategy.

Realizability

We study the situation where a behavior F is not fully realizable:

- This means that there is some input x and some output $y \in F(x)$ such that
 - ♦ there does not exist a strongly causal total function f such that $\forall x \in : f(x) \in F(x)$ and y = f(x).
- We show that then there is a time t ∈ IN such that the partial computation z with z | I = x↓t and z | O = y↓t is a dead end.

ПП

Infinite Tree of Partial Computations

- We call winning states (states for which a winning strategy exists) "white" nodes and loosing states (states for which a winning strategy does not exist) "black" nodes.
- Each node is characterized by a pair of evaluations for the channels

$$(a, b) \in (I \rightarrow (M^*)^t, O \rightarrow (M^*)^t).$$

 An interactive computation step is the transition of a state (a, b) to a new state (a', b') where there exists

```
input \alpha: I \rightarrow M<sup>*</sup>
output \beta : O \rightarrow M<sup>*</sup>
```

such that

$$a' = a^{\langle \alpha \rangle}$$
$$b' = b^{\langle \beta \rangle}$$

Black Nodes Denoting Loosing States

Correctness of computation trees

A step is called *correct*, if (a', b') is again a partial computation, i.e. if there exist histories x and y ∈ F(x) with

 $x \downarrow (t+1) = a' \land y \downarrow (t+1) = b'$

• For each behavior F we obtain a tree of partial computations.

- A node in the tree is white if and only if for every input α : I \rightarrow M* there exists some output β : O \rightarrow M* such that there is an arc that is labeled by α/β and leads to a white node.
- A node is black if and only
 - \diamondsuit if there exists some input $\alpha \colon \mathrm{I} \twoheadrightarrow \mathrm{M}^*$ such that
 - ♦ for each feasible output β: $O → M^*$ the arcs labeled by α/β lead to black nodes.
- A behavior is realizable, if the root of its computation tree is white.
- It is fully realizable if its computation tree contains only white nodes.

πп

Computation paths

- For each input history x and each output history $y \in F(x)$ we obtain a path in the computation tree. We get:
 - (1)The history $y \in F(x)$ is realizable for the input x if and only if its corresponding computation path is colored by white nodes only.
 - (2)The history $y \in F(x)$ is not realizable if and only if the is at least one node on its path in the computation tree that is black.
 - (3) For a not realizable history y ∈ F(x) there is a least partial computation (a, b) with a = x↓t and b = y↓t such that its node is black and all nodes (a↓t', b↓t') with t' < t are white.</p>

This means that all output histories $y' \in F(x')$ with

 $y' \downarrow t = y \downarrow t$ \land $x' \downarrow t = x \downarrow t$

are not realizable since there is a black node on their computation paths.

(4)Due to strong causality, if $y \in F(x)$ and y is not realizable there exists a time t such that all input histories x' with $x \downarrow t = x' \downarrow t$ contain not realizable output histories in F(x).

ПП

Interactive Computability

We call the state machine *computable* if the state transition function is Turing computable. We call a deterministic behavior *computable* if its state machine representation is computable.

Theorem:

If a behavior is computable it is realizable.

Computability of Interactive Behaviors

• For simplicity we consider only functions over untimed streams. The generalization to tuples of streams is quite straightforward. We consider functions on streams

f: $IN^{\omega} \rightarrow IN^{\omega}$

• We call the stream function f *computable* iff there exists a computable function:

f*: $IN^* \times IN \rightarrow IN$

such that for all sequences $x \in IN^*$, $t \in IN$:

 $f^*(x, t) = f(x).t$ iff $\#f(x) \ge t$ and $f^*(x, t)$ undefined otherwise and all $x \in IN^{\infty}$, $t \in IN$ there exists $x' \in IN^*$ such that

 $f(x).t = f^*(x, t)$

• Note that the second condition is actually with what is called continuity in fixpoint theory.

ПΠ

 $(F_1 \otimes F_2).x = \{ z | O: x = z | I \land z | O_1 \in F_1(z | I_1) \land z | O_2 \in F_2(z | I_2) \}$

 $F_1 \otimes F_2 \in IF[I \triangleright O],$

ТШ

Composition of specifications

SOFSEM 07, January 21st, 2007

ТΠ

Concluding Remarks

- Realizability is a notion that only arises in the context of specifications of interactive computations. It is a fundamental issue when asking whether a behavior corresponds to a computation.
- We choose to work out the theory of realizability in terms of Moore machines because they are a more intuitive model of interactive computation. The realizability is not a problem of Moore machines only but applies as well to Mealy machines.
- The bottom line of our investigation is that state machines with input and output, in particular, generalized Moore machines, are an appropriate concept to model interactive computations.
- Moore machines, in particular, take care of a delay between input and output.
- Realizable functions are the abstractions of state machines, such as partial functions are the abstractions of Turing machines. They extend the idea of computability as developed for non-interactive computations to interactive computations.

ПΠ