
Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

 Interaction
and

Realizability

Manfred Broy

Manfred Broy 2SOFSEM 07, January 21st, 2007

Motivation
• A reference model for generalized computation
◊ Interaction
◊ Concurrency
◊ Real time

• Properties of the model
• Computability

The model: functions/relations on streams
• Causality between input and output streams
• Realizability of single output histories for given input histories
• The role of non-realizable output in specific system contexts and for

composition
• Relating non-realizable behaviors to state machines
• The concept of interactive computation and computability

Original motivation:
basis for model driven software & systems engineering

Manfred Broy 3SOFSEM 07, January 21st, 2007

Types, Streams, Channels and Histories

• A type is a name for a set of data elements.
• Let TYPE be the set of all types.
• With each type Τ ∈ TYPE we associate a set of data elements, the

carrier set for Τ.
• We use the following notation:

M∗ denotes the set of finite sequences over M including the empty
sequence 〈〉,

M∞denotes the set of infinite sequences over M (that are represented by
the total mappings IN+ → M were IN+ = IN \ {0}).

• By
Mω = M∗ ∪ M∞

we denote the set of streams of elements taken from the set M.
〈〉 denotes the empty stream m.

• The set of streams has a rich algebraic and topological structure.

Manfred Broy 4SOFSEM 07, January 21st, 2007

Concatenation
We introduce concatenation ˆ as an operator

ˆ : Mω × Mω → Mω

• On finite streams x concatenation is defined as usual on finite sequences.
• We may see finite streams as partial functions IN+ → M and infinite

streams as total functions IN+ → M.
• For infinite streams r, s: IN+ → M we define:

sˆx = s

sˆr = s
〈x1 … xn〉ˆ〈s1 … 〉 = 〈x1 … xn s1 … 〉

• Streams are used to represent histories of communications of data
messages transmitted within a time frame.

• Given a message set M of type Τ a timed stream is a function
s: IN+ → M∗

• For each time t the sequence s(t) denotes the sequence of messages
communicated at time t in the stream s.

Manfred Broy 5SOFSEM 07, January 21st, 2007

Notation

!" empty sequence or empty stream,

!m" one-element sequence containing m as

its only element,

x.t t-th element of the stream x,

x#t prefix of length t of the stream x,

#x number of elements in x

$

x finite or infinite stream that i s the result of

concatenating all sequences in the t imed stream

x. Note that

$

x is finite if x carries only a finite

number of nonempty sequences.

Manfred Broy 6SOFSEM 07, January 21st, 2007

System class: distributed, reactive systems

Basic system model

lc

clLM Control RM
cr

rc

kc
component

channel

System consists of
• named components (with local state)
• named channels

driven by global, discrete clock

channel
name

component
name

Manfred Broy 7SOFSEM 07, January 21st, 2007

Basic Model

E

eq

qe
Q

t t+1 t+2 t+3

<a,d,a,b> <>

Timed Streams: Semantic Model for Black-Box-Behavior

Messages
transmitted at time t

infinite channel
history

Message set:

M = {a, b, c, ...}

Manfred Broy 8SOFSEM 07, January 21st, 2007

The Basic Behaviour Model: Streams and Functions

Manfred Broy 9SOFSEM 07, January 21st, 2007

Deterministic interface model: a universal model of interactive behaviourDeterministic interface model: a universal model of interactive behaviour

x1: S1

xn: Sn

y1: T1

ym: Tm

f
M M

Manfred Broy 10SOFSEM 07, January 21st, 2007

I O

Component interface

Causality

(I ! O) syntactic interface with set of

 input channels I and of output channels O

f :
r
I !

r
O semantic interface for (I ! O)

 with timing property addressing causality

 (let x, z "
r
I , y "

r
O , t " IN):

x#t = z#t $ f(x)#t+1 = f(z)# t+1

x # t prefix of history x with t finite sequences

Functions with this property are called strongly causal.

Manfred Broy 11SOFSEM 07, January 21st, 2007

Consequences of Causality I

Causal functions have unique fixpoints:

Given a function:

f :

!

r
I "

!

r
I

then there exists a unique fixpoint y #

!

r
I with

f(y) = y

Manfred Broy 12SOFSEM 07, January 21st, 2007

Consequences of Causality II

Time abstractions are prefix monotonic

Given a function:
f :

€

r
I →

€

r
O

a function

€

f : (I → M) → (O → M)
is called time abstraction of f if for all x ∈

€

r
I we have

€

f (x) = f (x)
If f is causal then

€

f (if it exists) is prefix monotonic

Manfred Broy 13SOFSEM 07, January 21st, 2007

General (Nondeterministic) Interface modelGeneral (Nondeterministic) Interface model

Manfred Broy 14SOFSEM 07, January 21st, 2007

I O

Component interface

Causality

(I ! O) syntactic interface with set of

 input channels I and of output channels O

F :
r
I ! "(

r
O) semantic interface for (I ! O)

 with timing property addressing causality

 (let x, z #
r
I , y #

r
O , t # IN):

x$t = z$t % {y$t+1: y # F(x)} = {y$t+1: y # F(z)}

x $ t prefix of history x with t finite sequences

Functions with this propertiy are called strongly causal.

A component is a total behavior

Manfred Broy 15SOFSEM 07, January 21st, 2007

Consequences of Causality

Either all result sets are empty or none

Given a function:

F :

!

r
I " #(

!

r
O)

then if

F(z) = $

for some z %

!

r
I , then

F(x) = $

for all x %

!

r
I .

Then F is called paradoxical.

Manfred Broy 16SOFSEM 07, January 21st, 2007

Definition: Realizability

An I/O-behavior F is called realizable,
if there exists a strongly causal total function

f is called a realization of F.

By [F] we denote the set of all realizations of F.

f:

!

r
I "

!

r
O

such that we have:

 x #

!

r
I : f(x) # F(x)

Manfred Broy 17SOFSEM 07, January 21st, 2007

Definition: Realizability

An output history y ∈ F(x) is called realizable
for an interactive I/O-behavior F with input x,
if there exists a realization f ∈ [F] with

y = f(x).

Manfred Broy 18SOFSEM 07, January 21st, 2007

Observation

• There are causal non-paradox behaviours that are not
realizable

F(x) = {y: x ≠ y}

Proof: Assume F is realizable!
Then there exist f with f(x) ∈ F(x) for all x.

F has a fixpoint y with y = f(y).
We get
y = f(y) ∈ F(x)
But by the definition of F:
y ∉ F(x)

Manfred Broy 19SOFSEM 07, January 21st, 2007

Example: Component interface specification

 A transmission component TMC

 TMC

 in x: T3

 out y: T3

 x ~ y

 x ~ y ! (" m # T3: {m}$x = {m}$y)

TMC
x ~ y

x:T3 y:T3

Input channel

Output channel

Specifying assertion

Spec name

Manfred Broy 20SOFSEM 07, January 21st, 2007

State Machines with Input and Output

A state machine (Δ, Λ) with input and output according to
• the set I of input channels and
• the set O of output channels
is given by
• a state space Σ, which represents a set of states,
• a set Λ ⊆ Σ of initial states as well as
• a state transition function

Δ: (Σ × (I → M∗)) → ℘(Σ × (O → M∗))
For each
• state σ ∈ Σ and
• each valuation α: I → M∗ of the input channels in I by sequences of

messages we obtain by every pair
(σ', β) ∈ Δ(σ, α)

a successor state σ' and a valuation β: O → M∗ of the output channels
consisting of the sequences produced by the state transition.

Such state machines are also called Mealy machines.

Manfred Broy 21SOFSEM 07, January 21st, 2007

Classes of state machines

• A state machine (Δ, Λ) is called
• deterministic, if, for all states σ ∈ Σ and input α, Δ(σ, α) and Λ

are sets with at most one element.
• total, if for all states σ ∈ Σ and all inputs α the sets Δ(σ, α) and
Λ are not empty; otherwise the machine (Δ, Λ) is called partial,

• a (generalized) Moore machine, if its output depends only on the
state and not on the actual input of the machine. Then the
following equation holds for all input sequences α, α′ and output
sequences β, and all states σ:
∃ σ′ ∈ Σ: (σ′, β) ∈ Δ(σ, α) ⇔ ∃ σ′ ∈ Σ: (σ′, β) ∈ Δ(σ, α′)

Manfred Broy 22SOFSEM 07, January 21st, 2007

Moore Machines

• A way to characterize a Moore machine is to require functions
out: Σ → ℘(O → M∗)

next: Σ × (I → M∗) × (O → M∗) → ℘(Σ)

such that
Δ(σ, α) = {(σ′, β): β ∈ out(σ) ∧ σ′ ∈ next(σ, α, β)}

• Subtle point: the choice of the output β does not depend on the input
α, but the choice of the successor state σ′ may depend both on the
input α and on the choice of the output β. We therefore require that
for each β ∈ out(σ) there exists a successor state:

∀ β ∈ out(σ): ∃ σ′∈ Σ: σ′ ∈ next(σ, α, β)

• By SM[I → O] we denote the set of all total Moore machines with input
channels I and output channels O. By DSM[I → O] we denote the set
of deterministic total Moore machines.

Manfred Broy 23SOFSEM 07, January 21st, 2007

Computations of State Machines

• a stream x of input : x1 , x2, …

• a stream y of output : y1 , y2, …
• a stream s of states : σ0 , σ1, …

• The computation is generated given the input stream x
and the initial state σ0 by choosing step by step

(σi+1, yi+1) ∈ Δ(σi, xi+1)

Manfred Broy 24SOFSEM 07, January 21st, 2007

Computations

• A computation for a state machine (Δ, Λ) and an input
history x is given by a sequence of states

{σt: t ∈ IN }
and an output history y such that for all times t ∈ IN :

(σt+1, y.t+1) ∈ Δ(σt, x.t+1) and σ0 ∈ Λ

• The history y is called an output of the computation of the
state machine (Δ, Λ) for input x and initial state σ0.

• The machine computes the output history y for the input
history x and initial state σ0.

 y =

 x =

Manfred Broy 25SOFSEM 07, January 21st, 2007

Refinement and Equivalence of State Machines

• Two state machines are called (observably) equivalent if for each input
history their sets of output histories coincide.

• A state machine is called equivalent to a behavior F, if for each input
history x the state machine computes exactly the output histories in
the set F(x).

• A state machine (Δ2, Λ2) with transition function
Δ2: (Σ2 × (I → M∗)) → ℘(Σ2 × (O → M∗))

is called a transition refinement or a simulation of a state machine (Δ1,
Λ1) with the transition function

Δ1: (Σ1 × (I → M∗)) → ℘(Σ1 × (O → M∗))
if there is a mapping ρ: Σ2 → Σ1 such that for all states σ ∈ Σ2, and all
input α ∈ I → M∗ we have:
{(ρ(σ′), β): (σ′, β) ∈ Δ2(σ, α)} ⊆ Δ1(ρ(σ), α), {ρ(σ): σ ∈ Λ2} ⊆ Λ1

• A special case is given if ρ is the identity; then the equation simplifies
to:

Δ2(σ, α) ⊆ Δ1(σ, α) ∧ Λ2 ⊆ Λ1

Manfred Broy 26SOFSEM 07, January 21st, 2007

Nondeterministic versus deterministic computations

Theorem:
Every computation of a total non-deterministic Moore
machine is also a computation of a total deterministic
Moore machine.

Manfred Broy 27SOFSEM 07, January 21st, 2007

Refinements

• To capture refinements we need the more general state space with
Σ2 = (Σ1 × IN)

where for the Moore machine (Δ2, Λ) we only require:
Δ2((σ, t), α) = {((σ′, t+1), β)} where (σ′, β) ∈ Δ1 (σ, α)

• Each such state machine (Δ2, {(σ0 , 0)}) with σ0 ∈ Λ1 is called a
deterministic enhanced refinement of state machine (Δ1, Λ1).

• Consider two state machines:
Δ1, Δ2: Σ × (I → M∗) → ℘(Σ × (O → M∗))

where Δ1 produces arbitrary output and arbitrary successor states. Δ1 is
trivially a Moore machine.

• Every machine Δ2 in DSM[I → O] is a refinement of Δ1. In fact, every
Mealy machine Δ2 is a refinement of Δ1, too.

• To make sure that we obtain Moore machines in the construction above
we have to strengthen the formula slightly as follows:
∀α: Δ2((σ, t), α) = {((σ′, t+1), β)} where (σ′, β) ∈ Δ1 (σ, α)

• Since β does not depend on α in the original machine, this formula can
be fulfilled for each output β.

Manfred Broy 28SOFSEM 07, January 21st, 2007

Combination of State Machines

• We can also combine sets of state machines into one
state machine. Let a set of state machines be given
(where K is an arbitrary set of names for state
machines)

{(k, k): k ∈ K} with k: (k × (I → M)) → ℘(k × (O → M))

We define the composed state machine
 (,) =

€

k∈K
C (k, k)

as follows (let w.l.o.g. all state spaces k for the machines (k,
k), with k ∈ K be pairwise disjoint):

€

k∈K
U k

 (,) = k(,) for ∈ k

Manfred Broy 29SOFSEM 07, January 21st, 2007

Sets of deterministic machines

Theorem:
Every total Moore machine is equivalent to (a state
machine composed of) a set of deterministic Moore
machines.

Manfred Broy 30SOFSEM 07, January 21st, 2007

State machines define behaviors

Theorem:
Every total deterministic Moore machine (,) with the transition
function

 : (× (I → M)) → ℘(× (O → M))

defines a deterministic behavior

€

Fσ
Δ :

€

r
I → ℘(

€

r
O)

for every state ∈ where for each input x the output of the state

machine (,) is the history y where

€

Fσ
Δ (x) = {y}.

The function

€

Fσ
Δ is strongly causal.

Manfred Broy 31SOFSEM 07, January 21st, 2007

State machines define realizable behaviours

Corollary:
Every total Moore machine can be represented by a
fully realizable behavior.

We define an operator along the lines of the proof of the theorem
above

 : DSM[I O] → (

€

r
I →℘(

€

r
O))

that maps every total deterministic Moore machine onto its
interface abstraction

((, { })) =

€

Fσ0
Δ

Manfred Broy 32SOFSEM 07, January 21st, 2007

Behaviours can be represented by state machines

Corollary:
Every fully realizable interactive behavior can be
represented by a total Moore machine.

Theorem:
Every deterministic behavior

 F :

€

r
I → ℘(

€

r
O)

defines a total dete rministic Moore machine (,) with a
transition function

 : (× (I → M)) → ℘(× (O → M)).

Manfred Broy 33SOFSEM 07, January 21st, 2007

Interactive Computations

A computation is carried out for each time interval t ∈ IN in two steps:

(1) The input x.t is provided to the system,
(2) The output y.t+1 is selected. It must and can depend only on the

initial state, the input till time interval t and the output, which is
produced so far, till time interval t.

• To model interactive computations we assume for each initial state of
the considered system a function:

g: {z: I ∪ O → (M∗)t: t ∈ IN } × (I → M∗) → ℘(O → M∗)

such that for given input history x we define the output history y and the
state of the computation z inductively, where

z : IN → (I ∪ O → (M∗)t)
y.t+1 ∈ g(z.t) where (z.t)I = x↓t and (z.t)O = y↓t

• The function g is called an interactive computation strategy.
• By Out(g)(x) we denote the set of output histories y that can be

constructed by the computation strategy g in this way.

Manfred Broy 34SOFSEM 07, January 21st, 2007

Correct strategies

• The computation strategy g is called correct for the
interactive behavior F if Out(g)(x) ⊆ F(x);

• it is called deterministic if Out(g)(x) is always a one
element set.

Manfred Broy 35SOFSEM 07, January 21st, 2007

Interactive computations

For interactive computations

the following observations about strategies g hold:

• As long as g(z) is never empty, Out(g) is never
empty.

• Each strategy can be refined into a set of
deterministic strategies G where
◊ for each g′ ∈ G we require that g′(z) ∈ g(z) holds and

g′(x) contains exactly one element,

◊ a deterministic strategy is equivalent to a deterministic
behavior,

◊we get g(x) = {g′(x): g′ ∈ G }.

Manfred Broy 36SOFSEM 07, January 21st, 2007

Game theoretic view

• Assume we say that there is a winning strategy for the
partial computation

z: I ∪ O → (M∗)t

for some time t ∈ IN (which represents a partially played
game) if there is a strategy g with g(x) ∈ F(x) for all input
histories x with zI = x↓t that finds some y ∈ F(x) such
that zO = y↓t, where g(x) = {y}.

• If for a partial computation z every y ∈ F(x) with zO = y
is not realizable then there does not exist a winning
strategy.

Manfred Broy 37SOFSEM 07, January 21st, 2007

Realizability

We study the situation where a behavior F is not fully
realizable:

• This means that there is some input x and some output
y ∈ F(x) such that
◊ there does not exist a strongly causal total function f such that
∀ x ∈ : f(x) ∈ F(x) and y = f(x).

• We show that then there is a time t ∈ IN such that the
partial computation z with zI = x↓t and zO = y↓t is a
dead end.

Manfred Broy 38SOFSEM 07, January 21st, 2007

Infinite Tree of Partial Computations

• We call winning states (states for which a winning strategy
exists) “white” nodes and loosing states (states for which a
winning strategy does not exist) “black” nodes.

• Each node is characterized by a pair of evaluations for the
channels

(a, b) ∈ (I → (M∗)t , O → (M∗)t).
• An interactive computation step is the transition of a state

(a, b) to a new state (a′, b′) where there exists
input α: I → M∗

output β : O → M∗

such that
a′ = aˆ〈α〉
b′ = bˆ〈β〉

Manfred Broy 39SOFSEM 07, January 21st, 2007

Infinite Tree of Partial Computations

Black Nodes Denoting Loosing States

Manfred Broy 40SOFSEM 07, January 21st, 2007

Correctness of computation trees

• A step is called correct, if (a′, b′) is again a partial
computation, i.e. if there exist histories x and y ∈ F(x)
with

x↓(t+1) = a′ ∧ y↓(t+1) = b′

• For each behavior F we obtain a tree of partial
computations.

Manfred Broy 41SOFSEM 07, January 21st, 2007

Colouring nodes

• A node in the tree is white if and only if for every
input α: I → M∗ there exists some output β: O →
M∗ such that there is an arc that is labeled by α/β
and leads to a white node.

• A node is black if and only
◊ if there exists some input α: I → M∗ such that
◊ for each feasible output β: O → M∗ the arcs labeled by
α/β lead to black nodes.

• A behavior is realizable, if the root of its
computation tree is white.

• It is fully realizable if its computation tree contains
only white nodes.

Manfred Broy 42SOFSEM 07, January 21st, 2007

Computation paths
• For each input history x and each output history y ∈ F(x)

we obtain a path in the computation tree. We get:
(1)The history y ∈ F(x) is realizable for the input x if and only if its

corresponding computation path is colored by white nodes only.
(2)The history y ∈ F(x) is not realizable if and only if the is at least one

node on its path in the computation tree that is black.
(3) For a not realizable history y ∈ F(x) there is a least partial

computation (a, b) with a = x↓t and b = y↓t such that its node is
black and all nodes (a↓t′, b↓t′) with t′ < t are white.
This means that all output histories y′ ∈ F(x′) with

y′↓t = y↓t ∧ x′↓t = x↓t

are not realizable since there is a black node on their computation
paths.

(4)Due to strong causality, if y ∈ F(x) and y is not realizable there
exists a time t such that all input histories x′ with x↓t = x′↓t contain
not realizable output histories in F(x).

Manfred Broy 43SOFSEM 07, January 21st, 2007

Interactive Computability

We call the state machine computable if the state
transition function is Turing computable. We call a
deterministic behavior computable if its state
machine representation is computable.

Theorem:
If a behavior is computable it is realizable.

Manfred Broy 44SOFSEM 07, January 21st, 2007

Computability of Interactive Behaviors

• For simplicity we consider only functions over untimed
streams. The generalization to tuples of streams is quite
straightforward. We consider functions on streams

f: INω → INω

• We call the stream function f computable iff there exists a
computable function:

f*: IN* × IN → IN
such that for all sequences x ∈ IN∗, t ∈ IN :

f*(x, t) = f(x).t iff #f(x) ≥ t and f*(x, t) undefined otherwise
and all x ∈ IN∞, t ∈ IN there exists x’ ∈ IN∗ such that

f(x).t = f*(x, t)
• Note that the second condition is actually with what is

called continuity in fixpoint theory.

Manfred Broy 45SOFSEM 07, January 21st, 2007

Composition of Components and Services

F1 ! IF[I1!O1]

F2 ! IF[I2!O2]

C1 = O1 " I2

C2 = O2 " I1

I = I1\C2 # I2\C1

O = O1\C1 # O2\C2

F1$F2 ! IF[I ! O],

(F1$F2).x = {z|O: x = z|I % z|O1 ! F1(z|I1) % z|O2 ! F2(z|I2)}

I2\C1

O2\C2C1

C2O1\C1

I1\C2
F1 F2

Manfred Broy 46SOFSEM 07, January 21st, 2007

Composition of specifications

 Composed components spec

 in x1: M1 , x2: M2 , ...

 out y1: N1 , y2: N2 , ...

 ! c1, c2 , ... : P1 " ... " Pn

System composition = logical and

Channel Hiding = existential quantification

Input channels Output channels

Internal channels

Manfred Broy 47SOFSEM 07, January 21st, 2007

Concluding Remarks

• Realizability is a notion that only arises in the context of specifications
of interactive computations. It is a fundamental issue when asking
whether a behavior corresponds to a computation.

• We choose to work out the theory of realizability in terms of Moore
machines because they are a more intuitive model of interactive
computation. The realizability is not a problem of Moore machines only
but applies as well to Mealy machines.

• The bottom line of our investigation is that state machines with input
and output, in particular, generalized Moore machines, are an
appropriate concept to model interactive computations.

• Moore machines, in particular, take care of a delay between input and
output.

• Realizable functions are the abstractions of state machines, such as
partial functions are the abstractions of Turing machines. They extend
the idea of computability as developed for non-interactive computations
to interactive computations.

