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Social choice theory

Designing and analysing methods for collective decision making

1. aset of agentsA = {1, ...,n};

2. aset of alternativesX ;

3. each agenti has somepreferenceson the alternatives

⇒ choosing a socially preferred alternative

Two important subdomains of social choice:

• Vote: agents (voters) express their preferences on a set of alternatives

(candidates) and must come up to choose a candidate (or a nonempty subset of

candidates).

• Resource allocation(fair division, auctions...): agents express their preferences

over combinations of resources they may receive and an allocation must be

found.
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Social choice theory

1. aset of agentsA = {1, ...,n};

2. aset of alternativesX ;

3. each agenti has some preferences on the alternatives

• cardinal preferences:

– numerical preferences ui : X → IR utility function

– qualitative preferences ui : X →V qualitative ordered scale

• ordinal preferences: �i preference relation (transitive + reflexive) onX
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Social choice theory

• designing and evaluating formal methods of collective decision making

Typical results:impossibility/possibility theorems

There exists / there does not exist a social choice proceduremeeting requirements

(R1),...,(Rp)

Example: Arrow’s theorem

If the number of alternatives is at least 3, any aggregation function defined on all

profiles and satisfying unanimity and independence from irrelevant alternatives

is dictatorial.

• computational issues are neglected

Knowing that a given procedurecanbe computed is generally enough.
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AI and social choice theory: two research areas

From social choice theory to AI
importing concepts and procedures from social choice for solving problems

arising in AI applications

• societies of artificial agents (voting, negotiating / bargaining, ...)

• aggregation procedures for web site ranking and information retrieval

• vote procedures for clustering and pattern recognition

From AI to social choice theory
using AI notions and algorithms for solving complex group decision making

problems.

⇓

computational social choice

(the subject of this talk)
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Voting rules and correspondences

1. a finiteset of votersA = {1, ...,n};

2. a [finite]set of candidates (alternatives)X ;

3. aprofile = a preference relation (= linear order) onX for each agent

4. P n set of all profiles.

Voting rule F : P n→ X

F(P1, . . . ,Pn) = socially preferred (elected) candidate

Voting correspondenceC : P n→ 2X \{ /0}
C(P1, . . . ,Pn) = set of socially preferred candidates.

Rules are obtained from correspondences by tie-breaking.
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A family of voting rules:positional scoring rules

- N voters,p candidates

- fixed list of p integerss1≥ . . .≥ sp

- voter i ranks candidatex in position j ⇒ scorei(x) = sj

- choose the candidate maximizings(x) = ∑n
i=1 scorei(x)

Examples:

• s1 = 1, s2 = . . . = sp = 0⇒ plurality rule;

• s1 = s2 = . . . = sp−1 = 1, sp = 0⇒ vetorule;

• s1 = p−1, s2 = p−2, . . .sp = 0⇒ Bordarule;
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Another family of voting rules:Condorcet-consistent rules

Let N(x,y) = #{i,x≻i y} be the number of voters who preferx to y.

Condorcet winner:

a candidatex such that∀y 6= x, N(x,y) >
n
2.

• the existence of a Condorcet winner is not guaranteed;

• when a Condorcet winner exists, it is unique

A Condorcet-consistent ruleelects the Condorcet winner when there is one.
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Another family of voting rules:Condorcet-consistent rules

Examples:

• Simpson rule(or maximin):

N(x,y) number of voters who preferx to y.

Simpson score: S(x) = miny6=xN(x,y)

Simpson winners = candidates maximizingS.

• Copeland rule:

x >ma j y: a strict majority of voters prefersx to y.

C(x) = #{y|x >ma j y}−#{y|y >ma j x}

Copeland winners = candidates maximizingC.
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Computing voting rules

Most voting rules are computed in polynomial time

Examples:

• positional scoring rules:O(np)

• Copeland, Simpson:O(np2)
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Computing voting rules

But some voting rules areNP-hard.

Dodgson for anyx∈ X , D(x) = smallest number of elementary changes needed to

makex a Condorcet winner.

elementary change = exchange of adjacent candidates in a voter’s ranking

Deciding whetherx is a Dodgson winner requires a logarithmic number of calls

to NP oracles:∆P

2 (O(logn))-complete [Hemaspaandra, Hemaspaandra & Rothe,

97]

Practical computation of Dodgson winners (and approximation schemes):

(McCabe-Dansted, Pricthard and Slinko, 06), (Homan and Hemaspaandra, 06).
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Computing voting rules

Young for anyx∈ X , Y(x) = smallest number of elementary changes needed to make

x a Condorcet winner.

elementary change = removal of a voter

Deciding whetherx is a Young winner is∆P

2 (O(logn))-complete as well [Rothe,

Spakowski & Vogel, 03]
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Computing voting rules

Kemeny
dK(P,P′) = number of(x,y) ∈ X 2 on whichP andP′ disagree;

dK(P,〈P1, . . . ,Pn〉) = ∑i=1,...,n dK(P,Pi)

P∗ Kemeny consensus⇒ dK(P∗,〈P1, . . . ,Pn〉) minimum

Kemeny winner = candidate ranked first in a Kemeny consensus

Deciding whetherx is a Kemeny winner is∆P

2 (O(logn))-complete

[Hemaspaandra, Spakowski & Vogel, 03]

Practical computation of Kemeny winners (Davenport and Kalagnanam, 04);

(Conitzer, Davenport and Kalagnanam, 06), (Ailon, Charikar and Newman, 05).
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Computing voting rules

Slater

P = (P1, . . . ,Pn) profile

MP majority graph induced byP: contains the edgex→ y iff a strict majority of

voters prefersx to y.

Slater ranking = linear order onX minimising the distance toMP.

Slater’s rule isNP-hard, even under the restriction that pairwise ties cannotoccur

(Ailon, , Charikar and Newman, 05), (Alon, 06), (Conitzer, 06).

Computation of Slater rankings: (Charon and Hudry 00, 06; Conitzer 06).
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Key question:structureof the setX of candidates?

Example 1 choosing a president:

X = {John Kerry, George Bush, Ralph Nader}

Example 2 choosing a common menu:

X = {asparagus risotto, foie gras}

× {roasted chicken, vegetable curry}

× {white wine, red wine}

Example 3 recruiting committee (3 positions, 6 candidates):

X = {A | A⊆ {a,b,c,d,e, f}, |A| ≤ 3}.

Key question:structureof the set of candidates?

In Examples 2-3:combinatorial domain

V A R = {X1, . . . ,Xn} set of variables

X = D1× ...×Dn (whereDi is a finite value domain for variableXi)
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Voting on combinatorial sets of alternatives

V A R = {X1, . . . ,Xn} set of variables

X = D1× ...×Dn set of alternatives (Di value domain for variableXi)

Naive formulation: given a profile (≻1, ...,≻n) and a voting ruleF, compute

F(≻1, . . . ,≻N).

First problem: the explicit representation of each≻i is exponentially large (in the

number of variables)

⇒ need forcompact preference representation languages.

Such languages are meant to express preference relations (or utility functions) in as

little space as possible, and to elicit preference from agents as quickly as possible.

Second problem: the direct computation of a voting rule can be very hard: when the

input is expressed in a compact representation language, computing voting rules is

bothNP-hard andcoNP-hard, and often much above.
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A first idea: voting separately on each variable

⇒multiple election paradoxes(Brams, Kilgour & Zwicker 98)

S: build a new swimming pool;T; build a new tennis court.

Suppose the true preferences are

voters 1 and 2 ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

voters 3 and 4 S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

voter 5 ST≻ ST̄ ≻ S̄T≻ S̄T̄

Problem 1: How can voters 1-4 report their projected preference on{S, S̄} and

{T, T̄}?
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Voting separately on each variable

⇒multiple election paradoxes(Brams, Kilgour & Zwicker 98)

S: build a new swimming pool;T; build a new tennis court.

Suppose the true preferences are

voters 1 and 2 ST̄ ≻ S̄T≻ S̄T̄ ≻ ST

voters 3 and 4 S̄T≻ ST̄ ≻ S̄T̄ ≻ ST

voter 5 ST≻ ST̄ ≻ S̄T≻ S̄T̄

Problem 2: suppose they do so by an “optimistic” projection:

• voters 1, 2 and 5:S; voters 3 and 4:̄S⇒ decision =S;

• voters 3,4 and 5:T; voters 1 and 2:̄T ⇒ decision =T.

AlternativeST is chosen although it is the worst alternative for all but onevoter.
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Brams, Kilgour & Zwicker: “The only way of avoiding the paradox would consist in

voting for combinations [of values] (...). If there are morethan eight or so

combinations to rank, the voter’s task could become burdensome. How to package

combinations (...) so as not to swamp the voter with inordinately many choices –

some perhaps inconsistent – is a practical problem that willnot be easy to solve.”

⇒ compact preference representation languages.
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A university has a position to fill. Three candidates: A, B, C.

A already has a position in another university.

B and C do not have any position.

The law requires the recruiting committee to consider transfers first.

transfer?

A B or C?

B C

majority of “yes” majority of “no”

majority for B majority for C
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Computing voting rules when the input is described in a compact representation

language is very hard (most rules are aboveNP andcoNP, even when comparing two

alternatives is inP).

Two ways of escaping this:

1. approximatethe output;

2. imposestructural restrictionson the preference profiles.

In this paper we address 2.

Assumption: voters’ preferences enjoy similar preferential independence relations

between variables

24



CP-nets [Boutilier, Brafman, Hoos and Poole, 99]

Idea: exploitconditional preferential independencebetween variables

{U,V,W} partition ofV A R .

DU =×Xi∈UDi etc.

U is preferentially independent ofV (givenW) iff

for all u,u′ ∈ Dom(U), v,v′ ∈ Dom(V), w∈ Dom(W),

(u,v,w)� (u′,v,w) if and only if (u,v′,w)� (u′,v′,w)

given a fixed value w of W, the preference over the possibles values of U is

independent from the value of V
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CP-nets

X Y Z

x≻ x̄
x : y≻ ȳ

x̄ : ȳ≻ y

x∨y : z≻ z̄

¬(x∨y) : z̄≻ z

x : y≻ ȳ

∣
∣
∣
∣
∣
∣

if X = x

thenY = y preferred toY = ȳ

everything else (z) being equal (ceteris paribus)

xyz≻ xȳz; xyz̄≻ xȳz̄;

x̄ȳz≻ x̄yz; x̄ȳz̄≻ x̄yz̄
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CP-nets

X Y Z

x≻ x̄
x : y≻ ȳ

x̄ : ȳ≻ y

x∨y : z≻ z̄

¬(x∨y) : z̄≻ z

≻X: xyz≻ x̄yz, xyz̄≻ x̄yz̄, xȳz≻ x̄ȳz, xȳz̄≻ x̄ȳz̄

≻Y: xyz≻ xȳz, xyz̄≻ xȳz̄, x̄ȳz≻ x̄yz, x̄ȳz̄≻ x̄yz̄

≻Z: xyz≻ xyz̄, xȳz≻ xȳz̄, x̄yz≻ x̄ȳz, x̄ȳz̄≻ x̄ȳz

≻C = transitive closure of≻X ∪ ≻Y ∪ ≻Z
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CP-nets

X Y Z

x≻ x̄
x : y≻ ȳ

x̄ : ȳ≻ y

x∨y : z≻ z̄

¬(x∨y) : z̄≻ z

≻: xyz
ր

ց

xȳz

xyz̄

ց

ր
xȳz̄→ x̄ȳz̄→ x̄ȳz→ x̄yz→ x̄yz̄
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G acyclic graphonV A R

A preference relationR is compatible withG iff for eachX ∈ V A R , X is

preferentially independent ofPar(X) given{X}∪Par(X).

G :

Z

↓

X → Y → T

X is independent of{Y,Z,T}

Z is independent of{X,Y,T}

Y is independent of{Z,T} givenX

T is independent of{X} given{Y,Z}

Observation:Rcompatible withG if and only if Rextends someR′ expressible by a

CP-net with associated graphG .
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G acyclic graphonV A R

〈R1, . . . ,RN〉 is compatible withG iff eachRi is compatible withG .

Observation: the set ofG -admissible profiles is Arrow-consistent

Sequential decomposability: apply local voting procecedures (on single variables),

one after the other, in an order compatible withG .

Observation: we don’t need to know the whole preference relationsR1, . . . ,RN but

only the CP-nets

C1 = (G ,T1), . . . ,CN = (G ,TN)

underlyingR1, . . . ,RN.
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G acyclic graphonV A R ; ≻ compatible withG

O = X1 > ... > Xp followsG iff (Xi ,Xj) ∈ G impliesXi > Xj

projectionof ≻ onXi given(x1, . . . ,xi−1):

xi ≻
Xi |X1=x1,...,Xi−1=xi−1 x′i iff for all (xi+1, . . . ,xp) ∈Di+1× . . .×Dp,

(x1, . . . ,xi−1,xi ,xi+1, . . . ,xp)≻ (x1, . . . ,xi−1,x′i ,xi+1, . . . ,xp)

Example:

xyz≻ xȳz≻ xyz̄≻ xȳz̄≻ x̄ȳz̄≻ x̄ȳz≻ x̄yz≻ x̄yz̄

x≻X x̄ y≻Y|X=x ȳ z≻Z|X=x,Y=y z̄

y≻Y|X=x ȳ: givenX = x, the agent prefersy to ȳ (whatever the fixed value ofZ)
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G acyclic graphonV A R ; R= (≻1, ...,≻N) compatible withG ;

O = X1 > ... > Xp linear order onV A R followingG .

r i collection of voting rules (one for eachXi).

Sequential voting rule Seq(r1, . . . , rp):

• x∗1 = r1(≻
X1
1 , . . . ,≻X1

N );

• x∗2 = r2(≻
X2|X1=x∗1
1 , . . . ,≻

X2|X1=x∗1
N );

• . . .

• x∗p = rp(≻
Xp|X1=x∗1,..,Xp−1=x∗p−1
1 , ..,≻

Xp|X1=x∗1,..,Xp−1=x∗p−1
N )

Seq(r1, . . . , rp)(R) = (x∗1, . . . ,x
∗
p)
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Example:rX = rY = majority rule

3 voters 2 voters 2 voters

x̄y≻ x̄ȳ≻ xȳ≻ xy xy≻ xȳ≻ x̄ȳ≻ x̄y xȳ≻ xy≻ x̄y≻ x̄ȳ

For all voters,X is preferentially independent ofY: G = {(X,Y)}

≻X:

3 voters 2 voters 2 voters

x̄≻ x x≻ x̄ x≻ x̄

4 voters unconditionally preferx over x̄⇒ x∗ = rX(≻1, . . . ,≻7) = x
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Example:rX = rY = majority rule

3 voters 2 voters 2 voters

x̄y≻ x̄ȳ≻ xȳ≻ xy xy≻ xȳ≻ x̄ȳ≻ x̄y xȳ≻ xy≻ x̄y≻ x̄ȳ

x∗ = rX(≻1, . . . ,≻7) = x

≻Y|X=x:

3 voters 2 voters 2 voters

ȳ≻ y y≻ ȳ ȳ≻ y

givenX = x, 5 voters out of 7 prefer ¯y to y⇒ y∗ = rY|X=x(≻1, . . . ,≻7) = ȳ

Seq(rX, rY)(≻1, . . . ,≻7) = (x, ȳ)
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A voting ruler onX = D1× . . .×Dp is decomposable
iff there existn voting rulesr1, . . . , rp on D1, . . . ,Dp such that:

for any linear orderO = X1 > ... > Xp onV A R

and for any preference profileR= (R1, ...,RN) following O ,

we haveSeq(r1, . . . , rp)(R) = r(R).

• no positional scoring rule is decomposable;

• most other well-known voting rules fail to be decomposable

Obviously:

• any dictatorial rule is decomposable

• any constant rule is decomposable

Question: are there any “reasonable” decomposable rules?

Conjecture: if C is a decomposable, neutral and anonymous correspondence, then

C(R) = X for all R.
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Condorcet winner
x such that∀y 6= x, #{i,x≻i y}>

N
2

Sequential Condorcet winner:

G acyclic graphonV A R ; (≻1, ...,≻N) compatible withG ;

O = X1 > ... > Xp followingG .

(x∗1, . . . ,x
∗
p) sequential Condorcet winnerfor P andO iff

• ∀x′1 ∈ D1, #{i,x∗1 ≻
X1
i x′1}>

N
2 ;

• . . .

• ∀x′p ∈ Dp #{i,x∗p ≻
Xp|X1=x∗1,...,Xp−1=x∗p−1
i x′p}>

N
2
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Sequential Condorcet winner:

2 voters 1 voter 2 voters

xȳ≻ x̄ȳ≻ xy≻ x̄y xy≻ xȳ≻ x̄y≻ x̄ȳ x̄y≻ x̄ȳ≻ xy≻ xȳ

X andY are preferentially independent⇒ take any order

• 3 voters unconditionally preferx to x̄⇒ x local Condorcet winner

• 3 voters unconditionally prefery to ȳ⇒ y local Condorcet winner

⇒ xy sequential Condorcet winner

• a Condorcet winner is a sequential Condorcet winner – but theconverse does not

hold (4 voters prefer ¯xȳ to xy). Cf. paradox of the three referenda(Laslier, 2002)

• equivalence obtained if preferences are conditionally lexicographic.
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Manipulation and strategyproofness

Manipulation: a coalition of voters expressing an insincere preference profile so as to

give more chance to a preferred candidate to be elected.

Example:r = plurality rule

3 voters 2 voters 2 voters

x̄y

x̄ȳ

xȳ

xy

xy

xȳ

x̄ȳ

x̄y

xȳ

xy

x̄y

x̄ȳ

Outcome: ¯xy

3 voters 2 voters 2 voters

x̄y

x̄ȳ

xȳ

xy

xȳ

xy

x̄ȳ

x̄y

xȳ

xy

x̄y

x̄ȳ

Outcome:xȳ
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Manipulation and strategyproofness

Another example:plurality with runoff

8 4 5

a

b

c

c

b

a

b

a

c

1st round:c eliminated

2nd round:b elected
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Manipulation and strategyproofness

Manipulation: a coalition of voters expressing an insincere preference profile so as to

give more chance to a preferred candidate to be elected.

Example:plurality with runoff

2+6 4 5

a

b

c

c

b

a

b

a

c

2 6 4 5

c

a

b

a

b

c

c

b

a

b

a

c

1st round:c eliminated

2nd round:b elected
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Manipulation and strategyproofness

Manipulation: a coalition of voters expressing an insincere preference profile so as to

give more chance to a preferred candidate to be elected.

Example:plurality with runoff

2+6 4 5

a

b

c

c

b

a

b

a

c

2 6 4 5

c

a

b

a

b

c

c

b

a

b

a

c

1st round:c eliminated

2nd round:b elected

1st round:b eliminated

2nd round:a elected.
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Manipulation and strategyproofness

Gibbard (73) and Satterthwaite (75) ’s theorem: if the number of candidates is at least

3, then any nondictatorial voting procedure is manipulablefor some profiles.

Barriers to manipulation:

• making manipulationless efficient: make as little as possible of the others’ votes

known to the would-be manipulating coalition

• make manipulationhard to compute

[Bartholdi, Tovey & Trick, 89]; [Bartholdi & Orlin, 91];

[Conitzer & Sandholm, 02, 03]; [Conitzer, Lang & Sandholm, 03]
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Making manipulation computationally hard

{(1,α1), . . . ,(n,αn)} set ofweightedvoters (αi ∈ IN∗ for all i)

CONSTRUCTIVE MANIPULATION EXISTENCE: given a voting ruler, a set ofp

candidatesX , a candidatex∈ X , and the preferences rankings of voters 1, . . . ,k < n,

is there a way for votersK +1, . . . ,n to cast their votes such thatx is elected?

• plurality: in P;

• all other scoring rules (including Borda and veto): inP for p = 2, NP-complete

for p≥ 3;

• Copeland and Simpson: inP for p≤ 3, NP-complete forp≥ 4;

[Conitzer & Sandholm, 02]; [Conitzer, Lang & Sandholm, 03]
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Incomplete knowledge and communication complexity

Given someincompletedescription of the voters’ preferences,

• is the outcome of the voting rule determined?

• if not, whose information about which candidates is needed?

4 voters:c≻ d≻ a≻ b

2 voters:a≻ b≻ d≻ c

2 voters:b≻ a≻ c≻ d

1 voter: ?≻?≻?≻?

plurality winner already known (c)

Borda
partial scores (for 8 voters):a: 14 ;b: 10 ;c: 14; d: 10

⇒ only need to know the last voters’s preference betweena andc

general study in [Conitzer & Sandholm, 02]
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Incomplete knowledge and communication complexity

Communication complexity[Yao 79]: measure the minimum amount of information

to be communicated so that the outcome of the voting procedure is determined.

⇒ design protocols for gathering the information as economically as possible
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Incomplete knowledge and communication complexity

Example: plurality with runoff,n voters,p candidates.

Optimal protocol:

step 1 voters send the name of their most preferred candidate to thecentral authority

C

→֒ n logp bits

step 2 C sends the names of the two finalists to the voters

→֒ 2nlogp bits

step 3 voters send the name of their preferred finalist toC

→֒ n bits

total n(3logp+1) bits (in the worst case)

[Conitzer & Sandholm, 05]
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Resource allocation / fair division

A = {1, . . . ,n} agents

R = {r1, . . . , rp} indivisibleresources (objects)

π : A → 2R allocation

Possible requirements for allocations:

• π(i)∩π( j) = /0 for i 6= j: preemptive allocations;

• ∪iπ(i) = R : complete allocations;

• π(i) = π( j) for all i, j: shared allocations

Finding an allocation

= group decision making with a combinatorial set of alternatives
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Resource allocation6= fair division

Combinatorial auctions

Vi : 2R → IN for each agenti

Vi(X) maximal value (price) thati is ready to pay for the combination of resourcesX

Vi additive for alli ⇒ elicitation and optimal allocation are easy

Vi generallynot additive

{left shoe} 5 $

{right shoe} 5 $

{left shoe, right shoe} 40 $

{beer} 4 $

{lemonade} 3 $

{beer, lemonade} 5 $

complementarity (superadditivity) supplementarity (subadditivity)
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Resource allocation6= fair division

Combinatorial auctions: givenVi : 2R → IN for each agenti,

find the allocation maximizing the seller’s revenue:

π∗ maximizing
n

∑
i=1

V(π(i))

purely utilitarianisticcriterion (no equity/fairness involved)

Computational issues:

• representation / elicitation of the value functions⇒ bidding languages [Sandholm

99; Nisan 00; Boutilier & Hoos 01]

• computation of the optimal allocation (NP-hard): a huge literature
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Fair division: three families of criteria

Numerical criteria
Neednumerical preferences(sums of utilities are meaningful)

• utilitarianism + monetary compensation

agents 1 2

{a,b,c} 10 10

{a,b} 8 9

{a,c} 8 6

{b,c} 5 5

{a} 5 4

{b} 5 3

{c} 2 4

/0 0 0
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Fair division: three families of criteria

Numerical criteria
Neednumerical preferences(sums of utilities are meaningful)

• utilitarianism + monetary compensation

agents 1 2

{a,b,c} 10 10

{a,b} 8 9

{a,c} 8 6

{b,c} 5 5

{a} 5 4

{b} 5 3

{c} 2 4

/0 0 0

optimal allocation:π = 〈{a,b},{c}〉

+ monetary compensation from 1 to 2:8−4
2 = 2
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Fair division: three families of criteria

Qualitative criteria
Need(at least) qualitative preferences ui : 2R → L totally ordered scale common

to all agents⇒ interpersonal comparison of preference allowed.
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Fair division: three families of criteria

Qualitative criteria
Need(at least) qualitative preferences ui : 2R → L

• equity (or egalitarianism): theleximinordering

agents 1 2

{a,b,c} 10 10

{a,b} 8 9

{a,c} 8 6

{b,c} 5 5

{a} 5 4

{b} 5 3

{c} 2 4

/0 0 0
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Fair division: three families of criteria

Qualitative criteria
Need(at least) qualitative preferences ui : 2R → L totally ordered scale

• equity (or egalitarianism): theleximinordering

agents 1 2

{a,b,c} 10 10

{a,b} 8 9

{a,c} 8 6

{b,c} 5 5

{a} 5 4

{b} 5 3

{c} 2 4

/0 0 0

optimal allocation:

π = 〈{b},{a,c}〉
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Fair division: three families of criteria

Ordinal criteria need(at least) ordinal preferences

≥i : 2R → L complete preference relation on 2R

• Pareto efficiency: π is efficientiff there is noπ′ such thatπ′(i)≥i π(i) for all

i andπ′(i) >i π(i) for at least onei.

• envy-freeness: π is envy-freeiff for all i, j 6= i, π(i)≥i π( j)
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• Pareto efficiency: π is efficientiff there is noπ′ such thatπ′(i)≥i π(i) for all i

andπ′(i) >i π(i) for at least onei.

• envy-freeness: π is envy-freeiff for all i, j 6= i, π(i)≥i π( j)

agents 1 2

{a,b,c} 10 10

{a,b} 8 9

{a,c} 8 6

{b,c} 5 5

{a} 5 4

{b} 5 3

{c} 2 4

/0 0 0

π = 〈{b},{a,c}〉 Pareto-efficient

but not envy-free: 1 envies 2
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• Pareto efficiency: π is efficientiff there is noπ′ such thatπ′(i)≥i π(i) for all i

andπ′(i) >i π(i) for at least onei.

• envy-freeness: π is envy-freeiff for all i, j 6= i, π(i)≥i π( j)

agents 1 2

{a,b,c} 10 10

{a,b} 8 9

{a,c} 8 6

{b,c} 5 5

{a} 5 4

{b} 5 3

{c} 2 4

/0 0 0

π′ = 〈{a},{b,c}〉 envy-free but not Pareto-efficient

For this example there is no allocation

being both efficient and envy-free
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Fair division: three families of criteria

preferences numerical qualitative ordinal

ui : 2R → IN ui : 2R → L ≥i on 2R

L ordered scale

monetary
compensations

+ - -

interpersonal
comparisons

+ + -

intrapersonal
comparisons

+ + +

utilitarianism equity
Pareto efficiency

envy-freeness
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Resource allocation / fair division

• social choice theory:axiomatic study of criteria

• AI & OR: computational and representation issues, mainly for combinatorial

auctions

⇒ Representation and computational issues for fair division?

– approximate envy-freeness: [Lipton-Markakis-Mossel-Saberi 04]

– logical representation + complexity results for

– ordinal fair division: [Bouveret Lang 05]

– cardinal fair division [Bouveret Fargier Lang Lemaı̂tre 05]

– complexity issues indistributedallocation: [Dunne, Wooldridge Laurence 05;

Chevaleyre, Endriss, Estivié Maudet 04]
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Fair division under dichotomous preferences[Bouveret Lang, 05]

dichotomous preference relationsR is dichotomous if and only if there is a set of

“good” bundlesGoodsuch that for each subsetsA,B of R , A�R B if and only if

A∈Goodor B 6∈Good.

Example:

X = {a,b,c} ⇒ 2X = {∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}

Good−→ {{a,b},{b,c}}

Good−→ {∅,{a},{b},{c},{a,c},{a,b,c}}
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Fair division under dichotomous preferences

A dichotomous preference is fully defined by its set of good bundles⇒ propositional

logic representation

Example:

Paul (agent 1) Mary (agent 2)

Goodi {{a,b},{b,c},{a,b,c}} {{b}{b,c}}

ϕi b∧ (a∨c) b∧¬a

�Ri monotonous⇔ Goodi upward closed⇔ ϕi positive formula
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Fair division under dichotomous preferences

Simple propositional representation of the problem

P = 〈ϕ1, . . . ,ϕN〉

agenti, goodx 7→ propositional variablexi (x allocated toi)

rewriteϕi , replacing eachx by xi ⇒ ϕ∗i .

Example (continued):

Paul (agent 1) Mary (agent 2)

Goodi {{a,b},{b,c},{a,b,c}} {{b}{b,c}}

ϕi b∧ (a∨c) b∧¬a

ϕ∗i b1∧ (a1∨c1) b2∧¬a2
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Fair division under dichotomous preferences

allocation≈ truth assignment of thexi , satisfying:

ΓP =
∧

x∈X

∧

i6= j

¬(xi ∧x j)

Example (continued):

ΓP = ¬(a1∧a2)∧¬(b1∧b2)∧¬(c1∧c2)

π : [1 7→ {a,c},2 7→ {b}]⇒ F(π) = (a1,¬a2,¬b1,b2,c1,¬c2)
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Fair division under dichotomous preferences

Simple characterization of envy-freeness :

ΛP =
∧

i=1,...,N

[

ϕ∗i ∨

(
∧

j 6=i

¬ϕ∗j|i

)]

whereϕ∗j|i = ϕ∗i (xi ← x j)

Proposition: π is envy-free if and only ifF(π) � ΛP .

Example (continued):

ΛP =

(

1 is satisfied with her share
︷ ︸︸ ︷

(b1∧ (a1∨c1)) ∨

1 wouldn’t be satisfied with2’s share
︷ ︸︸ ︷

¬(b2∧ (a2∧c2)) )

∧ ( (b2∧¬a2)
︸ ︷︷ ︸

2 is satisfied with her share

∨ ¬(b1∧¬a1)
︸ ︷︷ ︸

2 wouldn’t be satisfied with1’s share

)
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Fair division under dichotomous preferences

Pareto-efficiency requires that allocations satisfy amaximalset of agents.

Proposition: π is efficient if and only if{ϕ∗i |F(π) � ϕ∗i } is a maximalΓP -consistent

subset of{ϕ∗1, . . . ,ϕ
∗
N}.

Example (continued):

agent 1 agent 2

Goodi {{a,b},{b,c},{a,b,c}} {{b}{b,c}}

ϕi (b∧ (a∨c)) b∧¬a

ϕ∗i (b1∧ (a1∨c1)) b2∧¬a2

ΓP = ¬(a1∧a2)∧¬(b1∧b2)∧¬(c1∧c2)

The 2 maximalΓP -consistent subsets of{ϕ∗1,ϕ
∗
2} are{ϕ∗1} and{ϕ∗2}
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Fair division under dichotomous preferences

Putting things together:

There exists an efficient and envy-free allocation

if and only if

∃SmaximalΓP -consistent subset of{ϕ∗1, . . . ,ϕ
∗
N}

such that
∧

S∧ΓP ∧ΛP is consistent.

⇒ SKEPTICAL INFERENCE IN DEFAULT LOGIC! (Reiter 1980)
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Fair division under dichotomous preferences

Definition: ∆ a set of formulae,β andψ formulae.

ψ is askeptical consequenceof 〈β,∆〉 (denoted〈β,∆〉|∼∀ψ)

iff ∀S∈MaxCons(∆,β),
∧

S∧β � ψ.

Proposition:

there exists an EEF allocationiff

〈ΓP ,{ϕ∗1, . . . ,ϕ
∗
N}〉 6 |∼

∀¬ΛP

⇒ using default logic algorithms for finding EEF allocations.

Proposition: deciding whether there exists an EEF allocation isΣp
2-complete.
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Fair division: bipartite fair matching

Two types of agents:A = {a1, . . . ,an}; B = {b1, . . . ,bn}.

Find a fair matching given preferences ofA-agents overB and preferences of

B-agents overA

Example:A = {a(lice),b(etty),c(harles)}; B = {Barcelona,London,Prague}

a : London> Prague> Barcelona

b : Barcelona> London> Prague

c : London> Barcelona> Prague

Barcelona : a> c > b

London : b> c > a

Prague : c> b > a
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Fair division: bipartite fair matching

Example:A = {a(lice),b(etty),c(harles)}; B = {Barcelona,London,Prague}

a : London> Prague> Barcelona

b : Barcelona> London> Prague

c : London> Barcelona> Prague

Barcelona : a> c > b

London : b> c > a

Prague : c> b > a

Stable allocation:if candidatex is matched with universityu then any universityu′

such thatu′ >x u is matched with a candidatex′ such thatx′ >u′ x, and similarly for

universities.

π1: a 7→ Prague, b7→ Barcelona, c7→ London

π2: a 7→ Barcelona, b7→ London, c7→ Prague

π1, π2 stable allocations
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Fair division: bipartite fair matching

Example:A = {a(lice),b(etty),c(harles)}; B = {Barcelona,London,Prague}

a : London> Prague> Barcelona

b : Barcelona> London> Prague

c : London> Barcelona> Prague

Barcelona : a> c > b

London : b> c > a

Prague : c> b > a

Stable allocation:if candidatex is matched with universityu then any universityu′

such thatu′ >x u is matched with a candidatex′ such thatx′ >u′ x, and similarly for

universities.

π1: a 7→ Prague, b7→ Barcelona, c7→ London

π2: a 7→ Barcelona, b7→ London, c7→ Prague

π1, π2 stable allocations
π1 Pareto-efficient for candidates but not for universities

π2 Pareto-efficient for universities but not for candidates
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Computational social choice: other issues

• social software;

• sequential group decision making;

• fairness and uncertainty;

• automated mechanism design;

• negotiation;

• communication languages;

• ...
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