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Social choice theory

Designing and analysing methods for collective decisioRinga

1. asetof agentst = {1,...,n};
2. aset of alternativey;
3. each agenthas somereference®n the alternatives

= choosing a socially preferred alternative

Two important subdomains of social choice:

e \ote agentsyoterg express their preferences on a set of alternatives
(candidatey and must come up to choose a candidate (or a nonempty subsetjo

candidates).

e Resource allocatioffair division, auctions...): agents express their prefees
over combinations of resources they may receive and anagidocmust be

found.



Social choice theory
1. asetof agentst = {1,...,n};
2. aset of alternativey ;

3. each agent has some preferences on the alternatives

e cardinal preferences
— numerical preferences ux — R utility function

— qualitative preferences;ux — V qualitative ordered scale

e ordinal preferences>; preference relation (transitive + reflexive) an




Social choice theory

e designing and evaluating formal methods of collective sieai making
Typical resultsimpossibility/possibility theorems

There exists / there does not exist a social choice procadeeting requirements
(R1),...,(Rp)
Example: Arrow’s theorem

If the number of alternatives is at least 3, any aggregatiarcfion defined on all
profiles and satisfying unanimity and independence froelexant alternatives
IS dictatorial.

computational issues are neglected

Knowing that a given proceduanbe computed is generally enough.




Al and social choice theory: two research areas

From social choice theory to Al
Importing concepts and procedures from social choice fimirsgp problems
arising in Al applications

e societies of artificial agents (voting, negotiating / bangay, ...)
e aggregation procedures for web site ranking and informatdrieval

e Vote procedures for clustering and pattern recognition

From Al to social choice theory
using Al notions and algorithms for solving complex grougidmn making
problems.

4

computational social choice
(the subject of this talk)
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Voting rules and correspondences
. afiniteset of votersz = {1,...,n};
. a[finite] set of candidates (alternatives),
. aprofile = a preference relation (= linear order) @nfor each agent
4. »" set of all profiles.

Votingrule F: 2" — x
F(Pi,...,P,) =socially preferred (elected) candidate

Voting correspondenceC: 2" — 24 \ {0}
C(Py,...,Py) = set of socially preferred candidates.
Rules are obtained from correspondences by tie-breaking.




A family of voting rules:positional scoring rules

N voters,p candidates

fixed list of p integerss; > ... > s,

voteri ranks candidat® in position ] = scorg(X) = s;
choose the candidate maximiziag) = 3! ; scorg(Xx)

Examples:

o 51 =1,%=... =5y, = 0= plurality rule;

® S =S =...=5Sy1=1,5,=0= vetorule;

e S=p-1,=p—-2,...55=0= Bordarule;




Another family of voting rulesCondorcet-consistent rules

Let N(Xx,y) = #{i,x =i y} be the number of voters who prefeto y.

Condorcet winner
a candidates such thatvy # x, N(x,y) > 5.

e the existence of a Condorcet winner is not guaranteed,
e when a Condorcet winner exists, it IS unique

A Condorcet-consistent rulelects the Condorcet winner when there is one.




Another family of voting rulesCondorcet-consistent rules

Examples:

e Simpson ruldor maximir):
N(x,y) number of voters who prefertoy.
Simpson scoreS(x) = miny..x N(X,y)
Simpson winners = candidates maximiziag

e Copeland rule
X >majy: a strict majority of voters prefersto y.

C(x) = #HYIX >majy} —#HYlY >maj X}
Copeland winners = candidates maximiz{g




Computing voting rules

Most voting rules are computed in polynomial time

Examples:

e positional scoring rulesd(np)

e Copeland, Simpsor®(np?)




Computing voting rules

But some voting rules angP-hard.

Dodgson for anyx € x, D(x) = smallest number of elementary changes needed tc

makex a Condorcet winner.
elementary change = exchange of adjacent candidates inex’sainking

Deciding whethex is a Dodgson winner requires a logarithmic number of calls
to NP oracles:AS (O(logn))-complete [Hemaspaandra, Hemaspaandra & Rothe
o7]

Practical computation of Dodgson winners (and approxiomesichemes):
(McCabe-Dansted, Pricthard and Slinko, 06), (Homan anda$gaandra, 06).



Computing voting rules

Young for anyx € x, Y(x) = smallest number of elementary changes needed to mpke
x a Condorcet winner.

elementary change = removal of a voter

Deciding whethex is a Young winner i€\5 (O(logn))-complete as well [Rothe,
Spakowski & Vogel, 03]



Computing voting rules
Kemeny
dk (P,P’) = number of(x,y) € x 2 on whichP andP’ disagree;
de (P, (P1,...,Pn)) = Yi—1._ ndk(PR)
P* Kemeny consensus- dg (P, (Py,...,P,)) minimum

Kemeny winner = candidate ranked first in a Kemeny consensus

Deciding whethek is a Kemeny winner id} (O(logn))-complete

[Hemaspaandra, Spakowski & Vogel, 03]

Practical computation of Kemeny winners (Davenport ancaahnam, 04);
(Conitzer, Davenport and Kalagnanam, 06), (Ailon, Chardwd Newman, 05).




Computing voting rules

Slater
P=(Py,...,P) profile

Mp majority graph induced bl contains the edge— vy iff a strict majority of
voters preferxtoy.

Slater ranking = linear order on minimising the distance thip.

Slater’s rule iNP-hard, even under the restriction that pairwise ties canootr
(Ailon, , Charikar and Newman, 05), (Alon, 06), (Conitzes)0

Computation of Slater rankings: (Charon and Hudry 00, O6Gjit2er 06).
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Key question:tructureof the setx of candidates?

Example 1 choosing a president:
x ={John Kerry, George Bush, Ral ph Nader}

Example 2 choosing a common menu:
X = {asparagus risotto, foie gras}
x  {roasted chicken, vegetable curry}
x {white wine, red wne}

Example 3 recruiting committee (3 positions, 6 candidates):
x ={A|AC{ab,c,d,e f}, |A <3}

Key question:structureof the set of candidates?
In Examples 2-3combinatorial domain
VAR ={Xq,..., %} set of variables

X = D1 x... x Dy (whereD; is a finite value domain for variablg)




Voting on combinatorial sets of alternatives

VAR ={Xg,...,%n} set of variables

X =D x... x D, set of alternatives§j value domain for variabl;)

Naive formulation: given a profile{4, ..., ) and a voting ruld-, compute
F(>~1,...,>N)-

First problem the explicit representation of eagh is exponentially large (in the
number of variables)

= need forcompact preference representation languages

Such languages are meant to express preference relatiamdi{p functions) in as
little space as possible, and to elicit preference from @& quickly as possible.

Second problenthe direct computation of a voting rule can be very hard: nviine
Input is expressed in a compact representation languaggutong voting rules is
bothNP-hard andcoNP-hard, and often much above.




A first idea: voting separately on each variable

= multiple election paradoxg®8rams, Kilgour & Zwicker 98)

S build a new swimming poolT ; build a new tennis court.
Suppose the true preferences are

voters1and 2 ST = ST> ST > ST

voters 3and 4 ST> ST = ST »= ST

voter 5 ST> ST - ST~ ST

Problem 1 How can voters 1-4 report their projected prefereanS)tﬁf} and
{T.T}?




\Voting separately on each variable

= multiple election paradoxg®8rams, Kilgour & Zwicker 98)

S build a new swimming poolT ; build a new tennis court.
Suppose the true preferences are

voters1and 2 ST = ST ST -~ ST
voters3and4 ST> ST -~ ST = ST
voter 5 ST> ST -~ ST- ST

Problem 2 suppose they do so by an “optimistic” projection:

e voters 1, 2 and 5S voters 3 and 4S= decision =S

e Vvoters 3,4 and 5T ; voters 1 and 2T = decision =T.

Alternative ST is chosen although it is the worst alternative for all but voter.




Brams, Kilgour & Zwicker: “The only way of avoiding the paradox would consist |
voting for combinations [of values] (...). If there are mahan eight or so
combinations to rank, the voter’s task could become bui®es How to package
combinations (...) so as not to swamp the voter with inorgilyamany choices —
some perhaps inconsistent — is a practical problem thatwatlbe easy to solve.

= compact preference representation languages




A university has a position to fill. Three candidates: A, B, C.

A already has a position in another university.

B and C do not have any position.

The law requires the recruiting committee to consider tfarsfirst.

majority of “yes” majority of “no”

majority for B majority for C




Computing voting rules when the input is described in a cahppresentation
language is very hard (most rules are abe#eandcoNP, even when comparing two
alternatives is irP).

Two ways of escaping this:
1. approximatethe output;
2. imposestructural restrictionson the preference profiles.

In this paper we address 2.

Assumption: voters’ preferences enjoy similar prefeantidependence relations
between variables




CP-nets [Boutilier, Brafman, Hoos and Poole, 99]
ldea: exploitconditional preferential independenbetween variables
{U,V,W} partition of 2 R _.

Dy = XX eU D; etc.

U is preferentially independent df (givenW) iff

forall u,u” € DomU), v,v € DomV), w € DomW),
(u,v,w) = (U, v,w) if and only if (u,v,w) = (U,V,w)

given a fixed value w of W, the preference over the possiblaswyaf U is
iIndependent from the value of V




If X =X

thenY =y preferred toy =y

everything else?) being equal ¢eteris paribu¥

XYyZ>= XyZ ~ XYZ = XYz,
XyZ= XYZ  XyZ = XyZ




=70 XYZ= XYZ XYZ = XYZ, XYZ> XyZ, XyZ > XyZ
L XYZ- XYZ, XYZ = XYZ, XYyZ>— XYZ XyZ = XyZ
L XYZ> XYZ, XYZ>- XYZ, XYZ XYZ, XYZ >~ XyZ

>~ = transitive closure of* U > U =4




XyZ

. / N -
. XYZ XYZ — XYZ — XYZ— XYZ— XYZ
NS
XyZ




G acyclic graphonva g

A preference relatioR is compatible withg iff foreachX € va %, X is
preferentially independent &far(X) given{X} U Par(X).

X is independent ofY,Z, T}

Z is independent of X,Y, T}

Y is independent ofZ, T} givenX
T is independent of X} given{Y,Z}

Z

|
X — Y — T

ObservationR compatible withg if and only if R extends som& expressible by a
CP-net with associated gragh




G acyclic graphonva g

(Ry,...,Rn) Is compatible withg iff each R is compatible withg .

Observation: the set af -admissible profiles is Arrow-consistent

Sequential decomposability apply local voting procecedures (on single variables)
one after the other, in an order compatible with

Observation: we don’t need to know the whole preferenceioglaR, ..., Ry but
only the CP-nets

Clz(gaTl)v"°7CN:(67TN)

underlyingRy,...,Rn.




G acyclic graphon 742 % ; >~ compatible withg

0 =X1 > ...> Xpfollows g iff (X,X) € g impliesX; > X;

projectionof > onX; given(Xg,...,X_1):

X ==X X=X ) iff for all (Xigq,. .., Xp) € Diy1 X ... x Dp,

(X1, s Xim 1y Xis X s+ - -5 Xp) = (X2, o Xim 1, X, X1, - - - 5 Xp)

Example:

XYZ >~ XYZ = XYZ = XYZ = XYZ = XYZ > XYZ>~ XyZ

X >X X y >Y|X:x >7 Z>Z|X:x,Y:y 7

y =Y X=Xy givenX = x, the agent prefergto y (whatever the fixed value &)




G acyclic graphon ¥4 % ; R=(>1, ..., =n) compatible withg ;
0 = X1 > ... > Xp linear order o2 % following g.

ri collection of voting rules (one for eachy).

Sequential voting rule Seq,, .. .,rp):
X X1y.
o Xi — I’1(>11, coay >_N1)’

X2 |X1:X>']<_ X2 |X1:Xi)

Xp|X1:X>’]<_,..,Xp_1:X>E_1 Xp|X1:X>’]<_,..,Xp_1:X>E_1
~1 e TN )

Seqry,...,rp)(R) = (X3,...,Xp)




Example:rx = ry = majority rule

3 voters

2 voters

2 voters

XY = XYy = XYy = XYy

XY == Xy = Xy = XY

XY = XY = XY == Xy

For all voters X is preferentially independent 8t ¢ = {(X,Y)}

X

3 voters

X=X

2 voters

X=X

2 voters

X>X

4 voters unconditionally preferoverx = x* =rx(>1,...,>7) =X




Example:rx = ry = majority rule

3 voters

2 voters

2 voters

XY = XYy = XYy = XYy

XY == Xy = Xy = XY

XY = XY = XY == Xy

X =rx(>1,...,=7) =X

3 voters

y>y

2 voters

y>y

2 voters

y>y

givenX = x, 5 voters out of 7 prefeytoy = y* =rYX=X(—1,...,=7) =y

Sedqrx,ry)(>=1,...,>=7) = (X,y)




A voting ruler onx = D1 x ... x Dy is decomposable
Iff there existn voting rulesry,...,rponDy,...,Dp such that:

for any linear ordeo = X; > ... > XponvVAag
and for any preference profiRr= (R, ..., Ry) following o,
we haveSedry,...,ry)(R) =r(R).

e NO positional scoring rule is decomposable;

e most other well-known voting rules fail to be decomposable
Obviously:

e any dictatorial rule is decomposable

e any constant rule is decomposable

Question: are there any “reasonable” decomposable rules?

Conjecture: if Cis a decomposable, neutral and anonymous correspondiaeaoe, t
C(R) =x forall R




Condorcet winner
x such thatry # x, #{i,x =i y} > 5

Sequential Condorcet winner

G acyclic graphonva g ; (>1, ..., =n) compatible withg ;
0 = X1 > ... > X, following g.

(X, --,Xp) sequential Condorcet winnéor P ando iff

X1

° VX&GDL #{i,Xi ~ i X/l}> %;

: Xp|X1=X7 ..., Xp_1=X.
/ * PIAL=AL - Ap=1"p-1 N
o VX, € Dp #{i, X5 = Xpt > 5




Sequential Condorcet winner

2 voters 1 voter 2 voters

XYy = Xy = XYy = XY XY = Xy = XY = Xy XY = Xy = XY = Xy

X andY are preferentially independent take any order

e 3 voters unconditionally prefecto x = x local Condorcet winner

e 3 voters unconditionally prefgrtoy = y local Condorcet winner

= Xy sequential Condorcet winner

e a Condorcet winner is a sequential Condorcet winner — butdheerse does not
hold (4 voters prefexy to xy). Cf. paradox of the three referendaaslier, 2002)

e equivalence obtained if preferences are conditionallictayraphic.
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Manipulation and strategyproofness

Manipulation a coalition of voters expressing an insincere preferemogl@ so as to
give more chance to a preferred candidate to be elected.

Example:r = plurality rule

3voters 2voters 2 voters 3 voters 2 voters 2 voters

Xy Xy
Xy Xy
Xy X\ Xy
Xy Xy

Outcome:xy Outcome:xy




Manipulation and strategyproofness

Another exampleplurality with runoff

4 S

b
a
C

1st round:c eliminated
2nd round:b elected




Manipulation and strategyproofness

Manipulation a coalition of voters expressing an insincere preferemogl@ so as to
give more chance to a preferred candidate to be elected.

Example:plurality with runoff

4 5

b
a
C

1st round:c eliminated

2nd round:b elected




Manipulation and strategyproofness

Manipulation a coalition of voters expressing an insincere preferemogl@ so as to
give more chance to a preferred candidate to be elected.

Example:plurality with runoff

4 5

b
a
C

1st round:c eliminated 1st round:b eliminated

2nd round:b elected 2nd round:a elected.




Manipulation and strategyproofness

Gibbard (73) and Satterthwaite (75) 's theorem: if the nunafeandidates is at least
3, then any nondictatorial voting procedure is manipuldtesome profiles.

Barriers to manipulation:

e making manipulatiomess efficientmake as little as possible of the others’ votes
known to the would-be manipulating coalition

e make manipulatiomard to compute
[Bartholdi, Tovey & Trick, 89]; [Bartholdi & Orlin, 91];
[Conitzer & Sandholm, 02, 03]; [Conitzer, Lang & Sandhol8] 0




Making manipulation computationally hard

{(L,a1),...,(n,an)} set ofweightedvoters @; € N* for all i)

CONSTRUCTIVE MANIPULATION EXISTENCE given a voting rule, a set ofp
candidatesc, a candidat& € x, and the preferences rankings of voters 1L k < n,
IS there a way for voterk + 1., ..., nto cast their votes such thats elected?

e plurality: inP;

e all other scoring rules (including Borda and veto)fifior p = 2, NP-complete
for p > 3;

e Copeland and Simpson: infor p < 3, NP-complete forp > 4;

[Conitzer & Sandholm, 02]; [Conitzer, Lang & Sandholm, 03]
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Incomplete knowledge and communication complexity

Given somancompletedescription of the voters’ preferences,

e is the outcome of the voting rule determined?
e If not, whose information about which candidates is needed?
4voters.c-d>a>Db
2votersia>-b>d>-c
2voterssb>-a>c>d
1 voter: ?2-?>7?>7
plurality winner already knownd)

Borda
partial scores (for 8 votersg: 14 ;b: 10 ;c: 14;d: 10
=- only need to know the last voters’s preference betwaeandc

general study in [Conitzer & Sandholm, 02]




Incomplete knowledge and communication complexity

Communication complexifirao 79]: measure the minimum amount of information
to be communicated so that the outcome of the voting proeedutetermined.

= design protocols for gathering the information as econalty@s possible




Incomplete knowledge and communication complexity

Example plurality with runoff, n voters,p candidates.
Optimal protocol:

step 1 voters send the name of their most preferred candidate toetfieal authority

C
— nlogp bits

step 2 C sends the names of the two finalists to the voters
— 2nlogp bits

step 3 voters send the name of their preferred finalistto
— n bits

total n(3logp+ 1) bits (in the worst case)

[Conitzer & Sandholm, 05]
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Resource allocation / fair division

24 =4{1,...,n} agents

R ={r1,...,rp} indivisibleresources (objects)

. 4 — 2% allocation

Possible requirements for allocations:
e TI(i)NTYj)=0fori=# j: preemptive allocations
e UiT(i) = R : complete allocations
e 11(i) =T11(j) for all i, j: shared allocations

Finding an allocation
= group decision making with a combinatorial set of altelmest




Resource allocation fair division

Combinatorial auctions

V; : 2% — N for each agent

Vi (X) maximal value (price) thatis ready to pay for the combination of resourees

V; additive for alli = elicitation and optimal allocation are easy
Vi generallynot additive

{left shog 5% {beet 4%
{right shoé 5% {lemonadé 3%
{left shoe, right shog 40 $ {beer, lemonade 5%

complementarity (superadditivity) supplementarity (subadditivity)




Resource allocation fair division

Combinatorial auctions: givenV; : 2% — N for each agent,

find the allocation maximizing the seller’s revenue:

T maximizing_iV(ﬂ(i))

purely utilitarianisticcriterion (no equity/fairness involved)

Computational issues:

e representation / elicitation of the value functiendidding languages [Sandhol
99; Nisan 00; Boutilier & Hoos 01]

e computation of the optimal allocationP-hard): a huge literature




Fair division: three families of criteria

Numerical criteria
Neednumerical preference&sums of utilities are meaningful)

e Uutilitarianism + monetary compensation

agents| 1 2
{a,b,c}
{a, b}

{a,c}
ib;c}




Fair division: three families of criteria
Numerical criteria
Neednumerical preference&sums of utilities are meaningful)

e Uutilitarianism + monetary compensation
agents| 1 2
{a,b,c} | 10 10
{a,b}
{a.c}
ib,c;

optimal allocationmt= ({a,b},{c})

+ monetary compensation from 1 to % =2




Fair division: three families of criteria

Qualitative criteria
Need(at least) qualitative preferences 1P* — L totally ordered scale common
to all agents=- interpersonal comparison of preference allowed.




Fair division: three families of criteria

Qualitative criteria
Need(at least) qualitative preferences 1P* — L
e equity (or egalitarianism): théeximinordering
agents| 1 2
{a,b,c}
{a,b}

{a,c}
ib;c}




Fair division: three families of criteria
Qualitative criteria
Need(at least) qualitative preferences 12* — L totally ordered scale
e equity (or egalitarianism): théeximinordering
agents| 1 2
{a,b,c} | 10 10
{a, b} 9

{a,c}
ib;c}

optimal allocation:

= ({b},{a,c}y)




Fair division: three families of criteria

Ordinal criteria need(at least) ordinal preferences
>i: 2% — L complete preference relation oft 2

e Pareto efficiency Tis efficientiff there is nom’ such thatt' (i) >; n(i) for all
i andTt(i) > 1i(i) for at least oné.

e envy-freenessrtis envy-freaff for all i, j #i, T(i) > 11(j)




e Pareto efficiency ttis efficientiff there is nort such thatt' (i) >; (i) for all i
andTt (i) >; 1i(i) for at least one.

e envy-freenessTtis envy-fredff for all i, j #i, Ti(i) > 1(j)

agents| 1 2
{a,b,c} | 10 10
{a,b}
{a.c}
ib,c;
{a;
{b}
{c}
0

= ({b}, {a, c}) Pareto-efficient

but not envy-free: 1 envies 2




e Pareto efficiency ttis efficientiff there is nort such thatt' (i) >; (i) for all i
andTt (i) >; 1i(i) for at least one.

e envy-freenessTtis envy-fredff for all i, j #i, Ti(i) > 1(j)

agents| 1 2
{a,b,c} | 10 10
{a,b}
{a.c}
ib,c;
{a;
{b}
{c}
0

W = ({a}, {b,c}) envy-free but not Pareto-efficient

For this example there is no allocation

being both efficient and envy-free




Fair division: three families of criteria

preferences numerical qualitative ordinal
u:2% - N u: 2% — L > on X
L ordered scale

monetary
compensations

Interpersonal
comparisons

Intrapersonal
comparisons

+

e _ Pareto efficiency
utilitarianism equity
envy-freeness




Resource allocation / fair division

e social choice theoryaxiomatic study of criteria

e Al & OR: computational and representation issues, mainhctmbinatorial
auctions

= Representation and computational issues for fair division
— approximate envy-freeness: [Lipton-Markakis-Mossab&ri 04]

— logical representation + complexity results for
— ordinal fair division: [Bouveret Lang 05]

— cardinal fair division [Bouveret Fargier Lang Leftra 05]

— complexity issues idistributedallocation: [Dunne, Wooldridge Laurence 05;
Chevaleyre, Endriss, Est&viMaudet 04]




Fair division under dichotomous preferenceqdBouveret Lang, 05]

dichotomous preference relationsR is dichotomous if and only if there is a set of
“good” bundlesGoodsuch that for each subsetsB of £ , A>r B if and only if
A € Goodor B ¢ Good

Example:

X ={a,b,c} = 2* = {@,{a},{b},{c},{a,b},{a,c},{b,c},{a b,c}}

Good— {{a,b},{b,c}}
Good— {@,{a},{b},{c},{a,c},{ab,c}}




Fair division under dichotomous preferences

A dichotomous preference is fully defined by its set of gooddies=- propositional
logic representation

Example:

Paul (agent 1) Mary (agent 2)
{{a,b},{b,c},{a,b,c}} | {{b}{b,c}}

bA(aVvc) bA-a

~Rr Monotonous= Good upward closed= ¢; positive formula




Fair division under dichotomous preferences

Simple propositional representation of the problem

P = ({1,...,N)

agent, goodx — propositional variable; (x allocated ta)

rewrite ¢;, replacing eachkt by x; = ¢

Example (continued)

Paul (agent 1) Mary (agent 2)
Good | {{ab},{b,c},{ab.c;} | {{b}{bc}}

0 bA(avc) bA-a

o; biA(a1Ver) b A —an




Fair division under dichotomous preferences

allocation= truth assignment of the, satisfying:

Example (continued)

[, = ﬁ(al/\az) A\ —|(b1/\ bz) A\ —1(01/\02)

m: [1— {a,c},2— {b}] = F(m) = (a1, ~ap,—b1,by,c1,—C2)




Fair division under dichotomous preferences

Simple characterization of envy-freeness :

Ny = /\ ¢ v /\ﬁq)]'kn

i=1,...,N JF#I

where¢7; = ¢ (X — X;j)

Proposition: 1tis envy-free if and only i (1) F A, .

Example (continued):

1 1s satisfied with her share 1 wouldn’t be satisfied withr's share

7\ 7\
7 N N

( (biA(a1Ver)) y “(bp A (B2 A Cp)) )

VAN ( (bz/\—laz) V —|(b1/\—|a1) )
W N ~ )
2 Is satisfied with her share 2 wouldn't be satisfied with's share




Fair division under dichotomous preferences

Pareto-efficiency requires that allocations satisfgaximalset of agents.

Proposition: ttis efficient if and only if{¢;|F (1) = ¢; } is a maximal ,-consistent
subset o ¢7, ..., 0}
Example (continued)

agent 1 agent 2
Good | {{a,b},{b,c},{ab,c;} | {{b}{b,c}}
i (bA(ave)) bA-a
o; (b1A(a1ver)) by A —ay

[, = ﬁ(al/\az) A\ —|(b1/\ bz) A\ —1(01/\02)

The 2 maximal ,-consistent subsets ¢b;,¢5} are{¢7} and{$5}




Fair division under dichotomous preferences

Putting things together:

There exists an efficient and envy-free allocation

If and only if

IS maximall ,-consistent subset g3, ..., o5}
such thatA SAT , AN, IS consistent.

= SKEPTICAL INFERENCE IN DEFAULT LOGIC! (Reiter 1980)




Fair division under dichotomous preferences

Definition: A a set of formulaef3 andy formulae.
W is askeptical consequenad (3,A) (denoted3,A) ]NVL|J)
Iff VSe MaxConsgA,3), ASABE .

Proposition:

there exists an EEF allocatiaff

(T {01, O} PN

=- using default logic algorithms for finding EEF allocations.

Proposition: deciding whether there exists an EEF aIIocatioEQscomplete.




Fair division: bipartite fair matching
Two types of agentsA = {ay,...,an}; B={b1,...,bn}.

Find a fair matching given preferencesAsfigents oveB and preferences of
B-agents oveA

Example:A = {a(lice),b(etty),c(harleg }; B = {BarcelonaLondonPrague

a . London> Prague> Barcelona Barcelona : ac>Db
b : Barcelong> London> Prague London . b>c>a

c . London> Barcelona> Prague  Prague . o b>a




Fair division: bipartite fair matching

Example:A = {a(lice),b(etty),c(harleg }; B = {BarcelonaLondonPrague

a . London> Prague> Barcelona Barcelona : ac>Db
b : Barcelong> London> Prague London . b>c>a

c . London> Barcelona> Prague  Prague . o b>a

Stable allocationif candidatex is matched with university then any university/
such that/ >, uis matched with a candidaié such thai’ > x, and similarly for
universities.

. a— Prague, b— Barcelona, ¢~ London
Th. a— Barcelona, b— London, c¢— Prague

Ty, Tk Stable allocations




Fair division: bipartite fair matching

Example:A = {a(lice),b(etty),c(harleg }; B = {BarcelonaLondonPrague

a . London> Prague> Barcelona Barcelona : ac>Db
b : Barcelong> London> Prague London . b>c>a

c . London> Barcelona> Prague  Prague . o b>a

Stable allocationif candidatex is matched with university then any university/
such that/ >, uis matched with a candidaié such thai’ > x, and similarly for
universities.

. a— Prague, b— Barcelona, ¢~ London
Th. a— Barcelona, b— London, c¢— Prague

Ty, Tk Stable allocations
Ty Pareto-efficient for candidates but not for universities

o Pareto-efficient for universities but not for candidates




Computational social choice: other issues

social software:

sequential group decision making;

fairness and uncertainty;
automated mechanism design;
negotiation;

communication languages;




