

- "The medium is the message" "The personal and social consequences of any medium result from the new scale that is introduced by any new technology"
- Popular misquotation (or not) of: "The medium is the massage" book by Marshall MacLuhan

What is multimedia anyway?

"Multimedia? As far as I'm concerned, it's reading with the radio on."

Rory Bremner, British comedian

Outline

• Multimedia retrieval

- Perceptual issues
- Algorithmic issues
- Shape based music retrieval
- $\boldsymbol{\cdot}$ Indexing

Multimedia

Definition:

Any combination of two or more media, represented in a digital form, sufficiently well integrated to be presented via a single interface, or manipulated by a single computer program

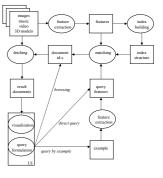
Loosely:

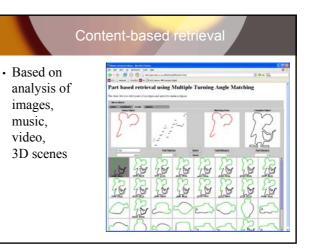
Multiple media: images, video, sound, 3D scenes

Multimedia aspects

- · Production, authoring
- Delivery
- Storage, database
- Throughput, QoS
- Retrieval

Multimedia retrieval


- Search, find, fetch, recover, restore, return ⇒ getting back
- Traditional 'information retrieval': text
- MM retrieval: searching in large collections of images, video, sound, 3D scenes (the 5th wave in web searching)


- Feature extraction
- Feature indexing
- Query formulation
- Feature matching
- Result visualization
- Feedback loop

MM retrieval framework

- Media: images, music, video, 3D scenes
- Features: color, texture, shape
- Indexing: feature space, object space

Applications

Logo retrieval

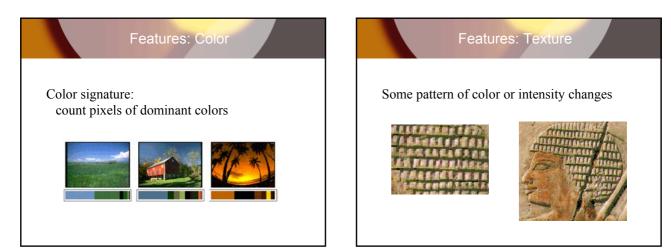
- · CAD searching
- · Product catalogues
- · Museum collections
- Photo archives
- Music selection
- Medical imaging
- · Crime investigation, law enforcement
- Video searching
- Encyclopedia search
- · Copyright protection

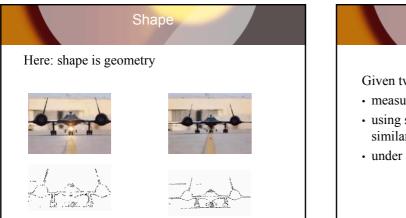
Example: Logo retrieval

- Services: search, watch
- Current practice: keyword based
- High level, but time consuming and error prone
- Keywords are Vienna classification codes

Vienna Classification Code

"castle":

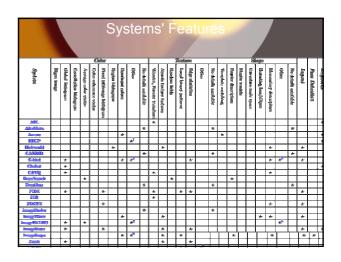

category 7: constructions, structures for advertisement, gates or barriers

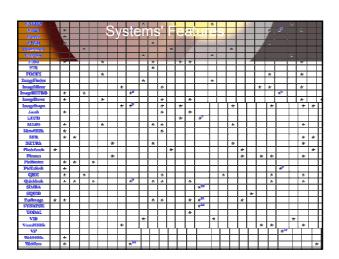

division 7.1: dwellings, buildings, advertisement hoardings or pillars, cages or kennels for animals

section: 7.1.1: castles, fortresses, crenellated walls, palaces

Example: Logo Retrieval

- Using Vienna classification code: up to 30.000 hits
- Visual inspection: 3000 per hour in morning 2000 per hour in afternoon
- $\boldsymbol{\cdot} \Rightarrow$ automatic retrieval on the basis of shape and layout

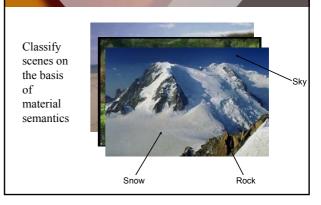



Matching

Given two images/objects/features A,B

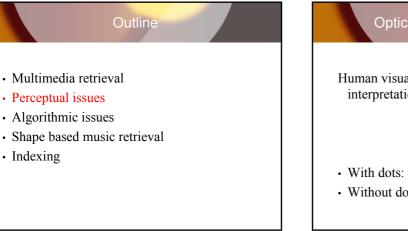
- measure dissimilarity, distance *d*(*f*(*A*),*B*)
- using some distance function *d* (often called similarity rather than dissimilarity)
- under some transformation f

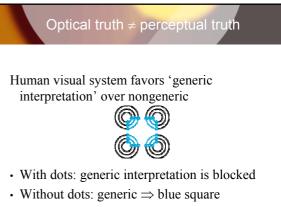
	CBIR Systems
	Obirt Oysterns
• ADL	 MARS
 AltaVista Photofi 	nder • MetaSEEk
 Amore 	• MIR
 Blobworld 	 NETRA
CANDID	 Photobook
 C-bird 	Picasso
Chabot	 PicHunter
 CBVQ 	 OBIC
 Digital Library Pr 	oject · SQUID
 DrawSearch 	 SurfImage
 Excalibur 	• SaFe
 FIR 	 SYNAPSE
 FOCUS 	 TODAI
 ImageFinder 	 VIR image engine
 ImageMiner 	 VisualSEEk
 ImageRETRO 	 VP IRS
 ImageRover 	 WebSEEk
 ImageSearch 	 WebSeer
 Jacob 	 WISE
• I CPD	• Zomay





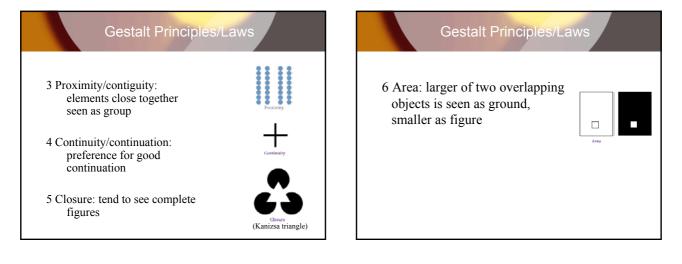
Systems' Features 56 systems in the table 46 use any kind of color features 38 use texture 29 use shape 20 layout 5 use face detection. http://give-lab.cs.uu.nl/cbirsurvey


- Level 1: primitive features color, texture, shape, lay-out
- Level 2: objects, scenes table, mountain
- Level 3: abstract concepts dancing, democracy!



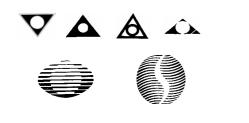
Level 3: Abstract Concepts

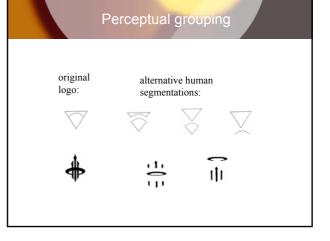
- Manually semantic annotion of example documents
- Automatic transfer of semantic annotion, based on lower level features

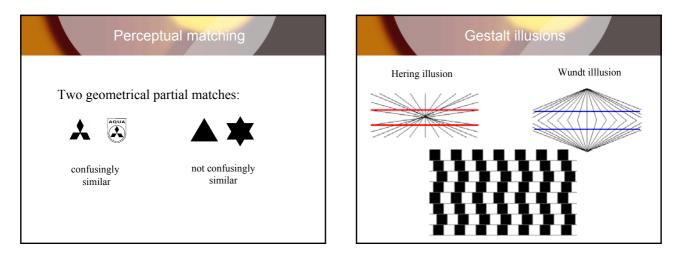

Gestalt Theory

- Initiated by Wertheimer (1923)
- "The whole is more than the sum of the parts"
- Goal: explain relation between patterns and their perceptual organization

- 1 Figure and ground: elements are separated based on contrast
- 2 Similarity: similar elements seen as group


Gestalt Principles/Laws


- No strenght ordering among different Gestalt laws: no unambiguous perceptual organization
- Koffka introduced law of Prägnanz: conveying the essence of something
- See a shape pattern as being as regular, simple, or symmetrical as possible
- Not part of the theory: measure for Prägnanz

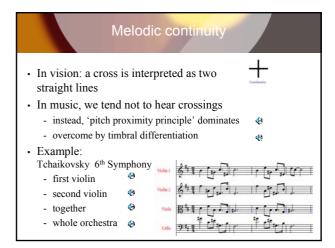


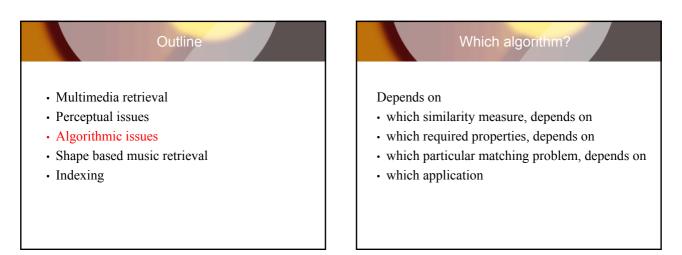
Perceptual grouping

Identify which shape elements belong together, for example on the basis of Gestalt principles:

Perceptual features of sound events

Musical note:


- Pitch
 - low-high: c. 90 categories
- Duration
 - long-short: multiples of 2 and 3
 - 'quantizing' into categories
- Loudness
 - soft-loud; non-categorical
- · Timbre, tone quality
 - categorical? (voice and instrument recognition)

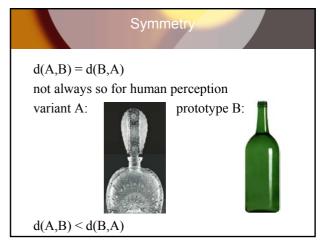

Perceptual grouping

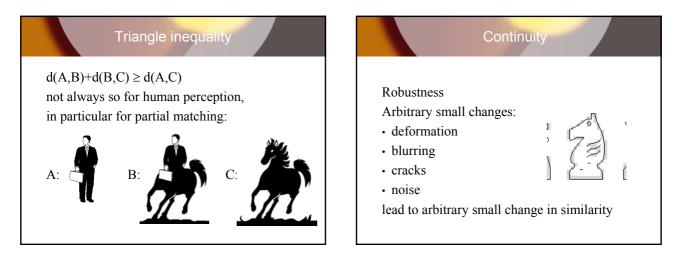
- Sound events are organised in groups
 - successive sounds form melodies
 - simultaneous sounds form *chords* or *harmonies*
- Music with one sound event at a time is called *monophonic*
- Music with more than one sound event at a time is called *polyphonic*
 - usually perceived as melody + chords
 - less frequent: 2 or more melodies

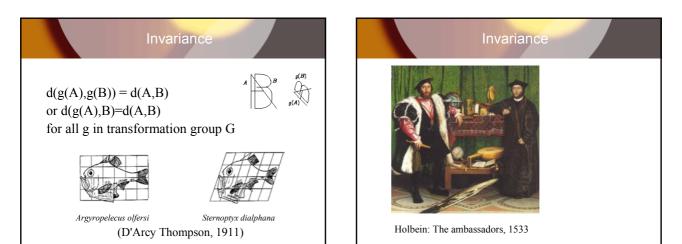
Gestalt principles

• Low level principles: _. __ - proximity - rhythmic - pitch ____ **** - similarity - duration - Timbre. articulation a b - continuity - melodic · These produce *closure* of wholes · High-level principles - paralellism

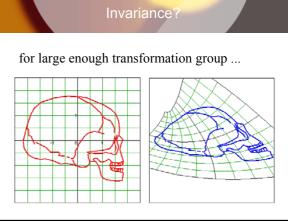
Which problem?

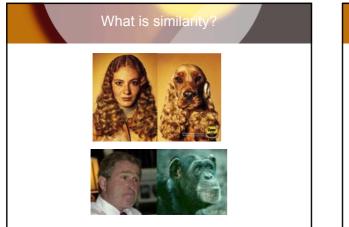

- Computation problem: d(A,B)
- Decision problem: $d(A,B) \leq \epsilon$?
- Decision problem: is there g: $d(g(A),B) \leq \epsilon$?
- Optimization problem: find g: min d(g(A),B)
- Approximate optimization problem: find g: d(g(A),B) < k d(g(A),B)


Which properties?

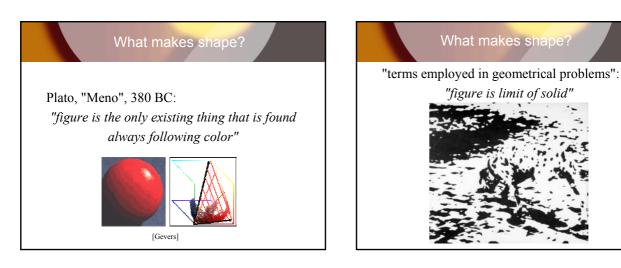

- · Metric properties
- Continuity
- Invariance

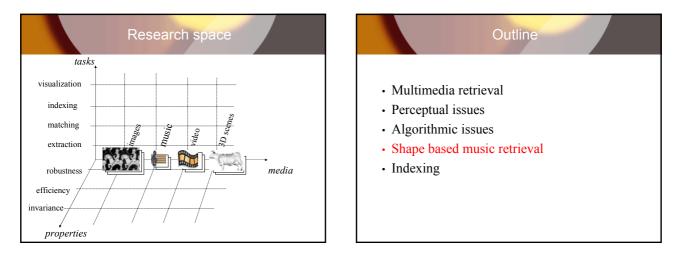
Metric Properties

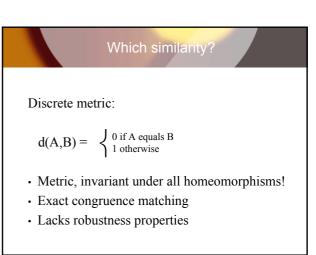

- S set of patterns
- Metric: $d: S \times S \rightarrow R$ satisfying
 - 1. Self-identity: $\forall x \in S, d(x,x)=0$
 - 2. Positivity: $\forall x \neq y \in S, d(x,y) > 0$
 - 3. Symmetry: $\forall x, y \in S, d(x,y) = d(y,x)$
 - 4. Triangle inequality: $\forall x, y, z \in S, d(x,z) \le d(x,y) + d(y,z)$
- Semi-metric: 1, 2, 3
- Pseudo-metric: 1, 3, 4
- *S* with fixed metric *d* is called metric space









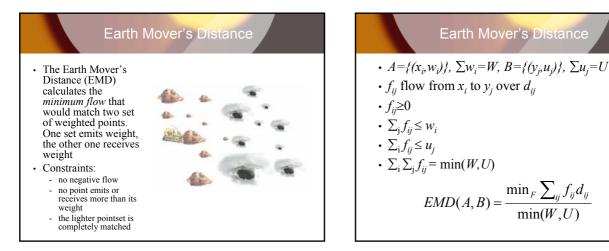


Which similarity?

Discrete metric:

 $d(A,B) = \begin{cases} 0 \text{ if } A \text{ equals } B \\ 1 \text{ otherwise} \end{cases}$

• Metric, invariant under all homeomorphisms!

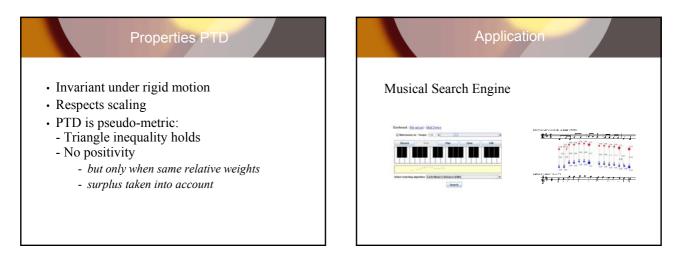

Problems of melody retrieval

- · People remember high-level concepts, not notes
 - often confused with poor performance abilities
 - theme-intensive music (fugues) stimulate formation of such concepts
- Melodic variability and change (melodic confound): gradual shift of meaning
 - transposition
 - augmentation/diminution
 - ornamentation
 - variation
 - compositional processes: inversion, retrograde

One-dimensional melody retrieval

- Common assumption is (was?) pitch-only retrieval is sufficient
 - CCGGAAGGFFEEDDEC
 - wildcards
- Variants
 - interval (distance between 2 pitches)
 - pitch-contour
 - repeat/up/down (Parson's Code)
 - RURURDRDRDRDRUD
- · String matching

Limitations Melody representation · Pitch contains only c. 50% of musical information Represent notes as weighted point sets - rhythm: 40%, timbre + loudness 10% in 2-dimensional - massive improvement expected from including rhythm space (pitch, time) Weight represents No polyphonic retrieval duration - especially harmony (chord progressions) is important other possibilities contour/metric - state of the art polyphonic matching: OMRAS project position etc Interesting · No higher level musical concepts properties after alignment, the weight is moved both along the - e.g. melodic contour vs. ornamentation tolerant against temporal axis and along the pitch axis melodic confounds - input from music cognition and perception suitable for polyphony partial matching

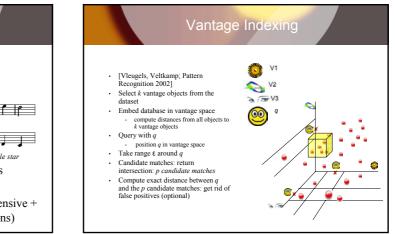


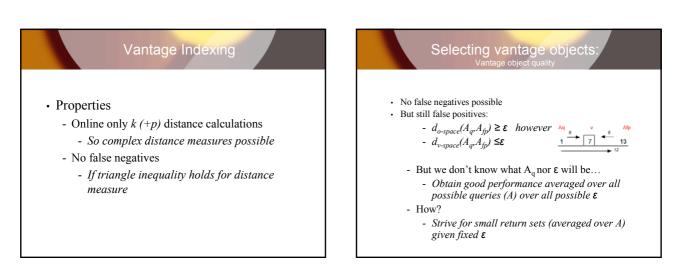
Properties EMD

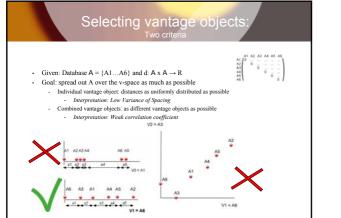
- · Invariant under rigid motion
- · Respects scaling
- Metric if d metric, and W=U
- If $W \neq U$:
 - No positivity, surplus not taken into account
 - No triangle inequality

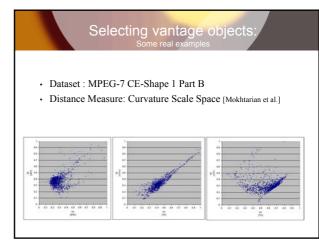
Proportional Transportation Dist

- $A = \{(x_i, w_i)\}, \ \sum w_i = W, \ B = \{(y_i, u_i)\}, \ \sum u_i = U$
- f_{ii} flow from x_i to y_i over d_{ii}
- $f_{ij} \ge 0$
- $\sum_{j} f_{ij} = w_i$
- $\sum_{i}^{J} f_{ij} \leq u_j W/U$
- $\sum_{i} \sum_{j} f_{ij} = W$ $PTD(A, B) = \frac{\min_{F} \sum_{ij} f_{ij} d_{ij}}{W}$

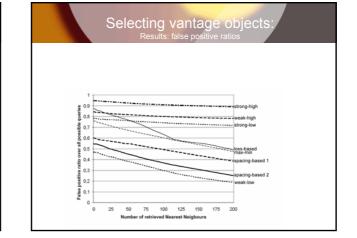

Ah, vous dirai-je maman/Twinkle twinkle little star/Altijd is Kortjakje ziek	Multimedia retrievalPerceptual issues
Γ Φ	 Algorithmic issues Shape based music retrieval Indexing

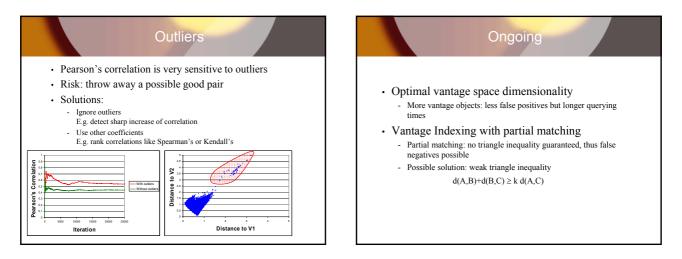

Imagine


- 480,000 musical theme notations in RISM
- 80,000 labeled anonymous

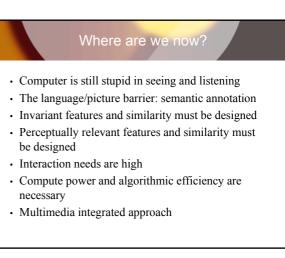

Ah! Vous dirai-je Maman/Altijd is Kortjakje ziek/Twinkle twinkle little star

- De-anonymization: 32,000,000,000 comparisons
- 1 ms per comparison: 370 days
- We identified 17,895 anonymous pieces, (*k* expensive + *O*(*logN*) cheap, i.s.o. *O*(*N*) expensive comparisons)

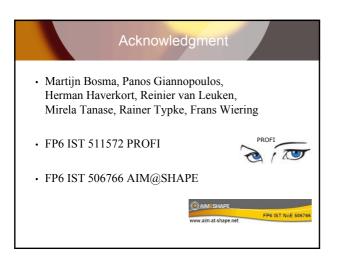

Selecting Vantage Objects Now we have the criteria, how to select them?


- · Random incremental construction:
 - Create index by adding database objects one by one in random order
 - While doing so keep an eye on the index' spacing and correlation properties

```
Algorithm 1 Spacing-based Selection
- Fix index where necessary
                                                                                 Input: Database A with objects A_1, ..., A_n, d(A, A) \rightarrow \mathbb{R},
                                                                                 thresholds \epsilon_{corr} and \epsilon_{spac}
Output: Vantage Index with Vantage objects V_1, V_2, ..., V_m


    select initial V<sub>1</sub>, V<sub>2</sub>, ..., V<sub>m</sub> randomly
    for All objects A<sub>i</sub> do in random order

                                                                                              for All objects V_j do
compute d(A_i, V_j)
                                                                                                      add Ai to index
                                                                                                     if var(Spacing)(V_j) > \epsilon_{spac} then
remove V_j
select new vantage object randomly
                                                                                              If for any pair p(V_k, V_l), Corr(V_k, V_l) > \epsilon_{corr} then
remove p's worst spaced object
select new vantage object randomly
                                                                                  11:
```

Scientific Future 1. Scalability 2. Multimodal (text, picture, speech etc.) 3. Invariance and perception 4. Feedback and learning 5. Benchmarking

