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Main idea

◮ Let φ(x1, ...xk) be a first-order formula.

For any finite structure A, we remove subsets {a1, ..., ak} satisfying

φ(a1, ..., ak) successively as long as we can.

What are the structures A such that we can obtain the empty

structure?
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Example 1

φ(x) = ∀u∀v((Exu ∧ Exv) ⇒ u = v)

= “x has degree at most 1”.

The graphs such that we obtain the empty structure: ACYCLIC

GRAPHS.



Destructive rule-based properties and first-order logic 6

Example 1

φ(x) = ∀u∀v((Exu ∧ Exv) ⇒ u = v)

= “x has degree at most 1”.

The graphs such that we obtain the empty structure: ACYCLIC

GRAPHS.



Destructive rule-based properties and first-order logic 7

Example 1

φ(x) = ∀u∀v((Exu ∧ Exv) ⇒ u = v)

= “x has degree at most 1”.

The graphs such that we obtain the empty structure: ACYCLIC

GRAPHS.



Destructive rule-based properties and first-order logic 8

Example 1

φ(x) = ∀u∀v((Exu ∧ Exv) ⇒ u = v)

= “x has degree at most 1”.

The graphs such that we obtain the empty structure: ACYCLIC

GRAPHS.



Destructive rule-based properties and first-order logic 9

Example 1

φ(x) = ∀u∀v((Exu ∧ Exv) ⇒ u = v)

= “x has degree at most 1”.

The graphs such that we obtain the empty structure: ACYCLIC

GRAPHS.



Destructive rule-based properties and first-order logic 10

Example 1

φ(x) = ∀u∀v((Exu ∧ Exv) ⇒ u = v)

= “x has degree at most 1”.

The graphs such that we obtain the empty structure: ACYCLIC

GRAPHS.



Destructive rule-based properties and first-order logic 11

Example 1

φ(x) = ∀u∀v((Exu ∧ Exv) ⇒ u = v)

= “x has degree at most 1”.

The graphs such that we obtain the empty structure: ACYCLIC

GRAPHS.



Destructive rule-based properties and first-order logic 12

Example 1

φ(x) = ∀u∀v((Exu ∧ Exv) ⇒ u = v)

= “x has degree at most 1”.

The graphs such that we obtain the empty structure: ACYCLIC

GRAPHS.



Destructive rule-based properties and first-order logic 13

Example 1

φ(x) = ∀u∀v((Exu ∧ Exv) ⇒ u = v)

= “x has degree at most 1”.
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Example 2

φ(x) = ∃u Exu ∨ ∀u x = u.

= “x is linked to another vertex or x is alone”.

The graphs such that we can obtain the empty structure:

CONNECTED GRAPHS.
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Example 3

φ(x, y) = x 6= y.

The structures such that we obtain the empty structure:

STRUCTURES OF EVEN SIZE.
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Example 3

φ(x, y) = x 6= y.

The structures such that we obtain the empty structure:

STRUCTURES OF EVEN SIZE.
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Example 4

φ(x, y, z) = Txyz.

The collections of 3-sets such that we obtain the empty structure:

those having an EXACT COVER BY 3-SETS.



Destructive rule-based properties and first-order logic 36

Example 4

φ(x, y, z) = Txyz.

The collections of 3-sets such that we obtain the empty structure:

those having an EXACT COVER BY 3-SETS.



Destructive rule-based properties and first-order logic 37

Example 4

φ(x, y, z) = Txyz.

The collections of 3-sets such that we obtain the empty structure:

those having an EXACT COVER BY 3-SETS.



Destructive rule-based properties and first-order logic 38

Example 4

φ(x, y, z) = Txyz.

The collections of 3-sets such that we obtain the empty structure:

those having an EXACT COVER BY 3-SETS.



Destructive rule-based properties and first-order logic 39

Example 4

φ(x, y, z) = Txyz.

The collections of 3-sets such that we obtain the empty structure:

those having an EXACT COVER BY 3-SETS.



Destructive rule-based properties and first-order logic 40

Example 4

φ(x, y, z) = Txyz.

The collections of 3-sets such that we obtain the empty structure:

those having an EXACT COVER BY 3-SETS (X3C).
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Definition

◮ Let φ(x1, ..., xk) be a first-order formula with k free variables x1,

..., xk and let A be a finite relational structure.

We consider the following rule: if there exist elements a1, ..., ak of

A such that A |= φ(a1, ..., ak) then remove a1, ..., ak from A, i.e.

replace A with the substructure A \ {a1, ..., ak}.

We call DR(φ(x1, ..., xk)) the set of finite structures A such that

there is a way to apply the rule to A successively until we obtain

the empty structure.
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More formally

A ∈ DR(φ(x1, ..., xk)) if there exist pairwise disjoint subsets of A

{a11, ..., a
1
k
}, ..., {an1 , ..., a

n

k
} such that:

•
⋃n

l=1{a
l
1, ..., a

l

k
} = A, and

• for every i < n, A \
⋃i

l=1{a
l
1, ..., a

l

k
} |= φ(ai+1

1 , ..., ai+1
k

).
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Summary of the preceding examples

• DR(∀u∀v((Exu ∧ Exv) ⇒ u = v)) = ACYCLIC GRAPHS

• DR(∃u Exu ∨ ∀u x = u) = CONNECTED GRAPHS

• DR(x 6= y) = EVEN

• DR(Txyz) = X3C
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Other examples

• DR(Exy ∧ Eyx ∧ x 6= y) = PERFECT MATCHING

• DR(∀u∀v((x ∈ u ∧ x ∈ v) ⇒ ∀t(t ∈ u ⇔ t ∈ v)) ∨

∀u(∀t(t ∈ x ⇒ t ∈ u) ∨ ∀t(t ∈ x ⇒ ¬(t ∈ u))))

= γ-ACYCLIC HYPERGRAPHS

• DR(∀u∀v((x ∈ u ∧ x ∈ v) ⇒ (∀t(t ∈ u ⇒ t ∈ v)

∨ ∀t(t ∈ v ⇒ t ∈ u))) ∨ ∀t¬(t ∈ x))

= β-ACYCLIC HYPERGRAPHS

• DR(∀u∀v((x ∈ u ∧ x ∈ v) ⇒ u = v) ∨ ∃w∀t(t ∈ x ⇒ t ∈ w)

= α-ACYCLIC OF HYPERGRAPHS
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Complexity

◮ Every DR(φ(x1, ..., xk)) is in NP (data complexity).

DR(Txyz) is NP-complete.

What restrictions can ensure polynomial time recognition?
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Syntactical restrictions

◮ Let Q1, ..., Qn be quantifier symbols in {∀, ∃, ∀∗, ∃∗}.

We call Q1...QnDR
k the class of properties in the form

DR(φ(x1, ..., xk)) where φ(x1, ..., xk) ∈ Q1...QnFO.

Example: GRAPH ACYCLICITY

(= DR(∀u∀v((Exu ∧ Exv) ⇒ u = v))) belongs to ∀∀DR
1.
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Influence on the complexity

Classes containing Classes included in

NP-complete PTIME:

properties:

• ∃∀DR
1 • ∃∗DR

1

• ∀∃DR
1 • ∀∗DR

1

• ∃DR
2 • Quantifier-free DR

2

• ∀DR
2

• Quantifier-free DR
3
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NP-complete cases
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Are NP-complete:

• DR(∃u∀v((Eux ∧ ((Euv ∧ Evu) ⇒ v = u)) ∨ Exx))

• DR(∀u∃v(((¬Evv ∧ (Evx ∨ Exv))

∧((Euu ∧ Eux) ⇒ (Evx ∧ Euv ∧ Evu))

∧((Euu ∧ Exu) ⇒ (Exv ∧ Euv ∧ Evu)))

∨(Exv ∧ Evx)))

• DR(∃t((Exx ∧ Exy ∧ ¬Eyx ∧ Eyt ∧ Ety)

∨(Ett ∧ x 6= t ∧ Etx ∧ Exy ∧ ¬Eyx)

∨(Ett ∧ Etx ∧ x 6= t ∧ x = y)

∨(Exx ∧ Exy ∧ Eyx ∧ x 6= y)))

• DR(∀u((Exy ∧ ¬(u 6= x ∧ Eux ∧ Exu)) ∨ (Exy ∧ x = y)))

• DR(Exy ∧ Eyz ∧ Ezx)
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PTIME cases
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Quantifier-free DR2

A ∈ DR(φ(x, y))?

⇐⇒

PERFECT MATCHING in the graph

G := (A, {{a, b} | A |= φ(a, b)}).
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Quantifier-free DR2

A ∈ DR(φ(x, y))

⇐⇒

PERFECT MATCHING in the graph

G := (A, {{a, b} | A |= φ(a, b)}).
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∀∗DR1 and ∃∗DR1

Confluent algorithms.
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∀∗DR1 and preservation under substructure

Preservation under substructure:

If A ∈ P and B ⊂ A, then B ∈ P .

Failure of the preservation theorem:

∀∗FO ( preserved under substructure FO.
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∀∗DR1 and preservation under substructure

Preservation under substructure:

If A ∈ P and B ⊂ A, then B ∈ P .

◮ Refinement of the failure:

∀∗FO ( ∀∗DR
1 ∩ FO ( preserved under substructure FO.
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Undefinability example

GRAPH PLANARITY 6∈ DR.
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Objectives

◮ Capturing more PTIME properties by finding other conditions

on the formula.

Complexity classification for special digraphs: simple graphs,

digraphs representing a hypergraph (i.e. bipartite digraphs on the

signature {∈}).
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