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Problem Definition

Given
@ a finite alphabet, X;
@ a finite set of n strings, S={s1, sy, ..., s, }, each of length m,

the CLOSEST STRING PROBLEM for S is to find a string t over ¥, of
length m, that minimizes the Hamming distance

H(t,S) = maxsesH(t,s).
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Applications

Recently, the CSP problem has received much attention, especially in
computational biology and coding theory.

@ In molecular biology, such problem finds applications, for instance, in
genetic drug target and genetic probes design [Lanctot et al., 1999],
in locating binding sites
[Stormo & Hartzell, 1989, Hertz et al., 1990];

@ in coding theory, to determine the best way to encode a set of
messages
[Gasieniec et al., 1999, Frances & Litman, 1997, Roman, 1992].
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The CSP problem is NP-hard

[Frances & Litman, 1997] have proved the NP-hardness of the problem for
binary codes.
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The CSP problem is NP-hard

[Frances & Litman, 1997] have proved the NP-hardness of the problem for

binary codes.
A successful strategy for approaching these problems is given by heuristic

algorithms.
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Heuristic algorithms

Heuristic algorithms do not guarantee an optimal solution, but in general,
they are able to provide a good feasible solution, i.e. a solution with a
“value close”to the optimum.
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Metaheuristic Algorithms and Nature

Metaheuristics represent a subclass of heuristic algorithms.

They are an extension of local search algorithms, where appropriate tech-
niques are introduced aimed at preventing the termination of the algorithm
in a local optimum.

Some metaheuristic algorithms are inspired by nature.
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@ The new proposed approach for the CLOSEST STRING PROBLEM is
based on ANT COLONY OPTIMIZATION (ACO) metaheuristic
[Dorigo, 1992, Dorigo et al., 1999].
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@ The new proposed approach for the CLOSEST STRING PROBLEM is
based on ANT COLONY OPTIMIZATION (ACO) metaheuristic
[Dorigo, 1992, Dorigo et al., 1999].

@ ACO is a multi-agent approach to difficult combinatorial

optimization problems, like the Traveling Salesman Problem (TSP)
and the Quadratic Assignment Problem (QAP).
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Ants behaviour

ACO algorithms were inspired by the observation of real ant colonies, in
particular, by the observation of their foraging behaviour:

@ once a food source has been found, ants always seek the shortest
and easiest path to return to their nest;

@ while walking from nest to the food sources, and vice versa, ants
deposit on the ground a substance called pheromone, forming in this
way a pheromone trail;

@ ants can smell pheromone (stigmergy) and, when choosing their
way, they tend to choose, in probability, paths marked by strong
pheromone concentrations.
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It has been experimentally proved that pheromone trail behavior can give
rise to the emergence of shortest paths, because on these paths pheromone
density is higher [Deneubourg et al., 1990].

Figure: Binary bridge experiment
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From Nature to Optimization

The ANT COLONY OPTIMIZATION brings the pheromone and social be-
havior concepts from nature to discrete optimization problems.
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Similarities with real ants

@ Colony of cooperating individuals.

@ Pheromone trails and stigmergy.

@ Shortest path searching.

@ Stochastic and myopic state transition policy.
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Differences with real ants

@ Artificial ants live in a discrete world.
@ Artificial ants have an internal state.

@ The amount of pheromone in ACO algorithms is proportional to the
quality of the solution.

o Artificial ants timing in pheromone laying is problem dependent.

Simone Faro and Elisa Pappalardo (speaker)
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The ACO metaheuristic has two main application fields:
@ NP-hard problems,
@ and shortest path problems.

As the CSP problem is NP-hard, and searching a closest string can be
viewed as finding a minimum path, it is natural to apply the ACO heuristic
to the CSP problem. This is what we did.
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ANT-CSP Algorithm 1/3

@ At each iteration, u artificial ants are generated;
@ each of them builds its closest string by moving on a |X| x m matrix,
one character at time;
e each location of the matrix, Tj;,1 < i< |X|and 0 <j<m—-1,
mantains the pheromone trail for the i-th character at the j-th
position of the string.

Simone Faro and Elisa Pappalardo (speaker)
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ANT-CSP Algorithm 2/3

@ The evaluation function is the maximum Hamming distance between
the current solution and the set of input strings.
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@ The evaluation function is the maximum Hamming distance between
the current solution and the set of input strings.

@ Once all the ants have built a solution, pheromone evaporation is
performed:
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ANT-CSP Algorithm 2/3

@ The evaluation function is the maximum Hamming distance between
the current solution and the set of input strings.
@ Once all the ants have built a solution, pheromone evaporation is
performed:
e each of the matrix location Tj;, 1 <i<|X[,0<j<m—1,
is decremented by a constant factor.
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ANT-CSP Algorithm 3/3

@ An elitist strategy is used to update pheromone trails:

o pheromone trails increment is proportional to the distance of the
current string from the input set, according to the rule:

Ti(t + 1) = 7(t) + (1 - %) .
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ANT-CSP Algorithm 3/3

@ An elitist strategy is used to update pheromone trails:

o pheromone trails increment is proportional to the distance of the
current string from the input set, according to the rule:

Ti(t + 1) = 7(t) + (1 - %) .

It is important to note that the better is the solution, the greater is
the increment of the pheromone.
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Pseudocode 1/2

1: INITIALIZATION
2: while not (TERMINATION_CRITERION) do
3: for i < 1 to udo

4 COLONY; < new_ant()

5: COLONY; find_solution()

6: COLONY; .evaluate_solution()
7: end for

8: EVAPORATION

9: COLONYpest.update_trails()
10: end while
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Pseudocode 2/2

1 procedure INITIALIZATION 1. procedure EVAPORATION
2 for i + 1 to mdo .
. 2 for i +— 1 to mdo
3 for j < 1to |X| do .
3: for j < 1to |X| do
: Ty < 1/I7] & T« (1—p) Ty
5: end for ’ Y yr
5 end for
6 end for 6 end for
7 initialize COLONY
7: end procedure
8: end procedure
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Ant-CSP
0000000

ANT-CSP, SIMULATED ANNEALING AND
GENETIC ALGORITHM

We compared the ANT-CSP algorithm with two other approaches for the
CSP problem [Liu et al., 2005]:
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We compared the ANT-CSP algorithm with two other approaches for the
CSP problem [Liu et al., 2005]:

@ SIMULATED ANNEALING
o GENETIC ALGORITHM
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SIMULATED ANNEALING (SA) is a generalization of Monte Carlo meth-
ods, originally proposed by [Metropolis et al., 1953] as a means of finding
the equilibrium configuration of a collection of atoms at a given tempera-
ture.
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SIMULATED ANNEALING (SA) is a generalization of Monte Carlo meth-
ods, originally proposed by [Metropolis et al., 1953] as a means of finding
the equilibrium configuration of a collection of atoms at a given tempera-
ture.

[Kirkpatrick et al., 1983] first proposed to apply SA to solve combinatorial
optimization problems.

The basic idea of SA was taken from an analogy with the annealing process
used in metallurgy.

Simone Faro and Elisa Pappalardo (speaker)
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SIMULATED ANNEALING 2/4

The SA algorithm for the CSP problem by [Liu et al., 2005] works much
along the same lines as Kirkpatrick's algorithm:
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SIMULATED ANNEALING 2/4

The SA algorithm for the CSP problem by [Liu et al., 2005] works much
along the same lines as Kirkpatrick's algorithm:

Q the algorithm starts at temperature T, set to m/2, where m is the
common string length.
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@ For each temperature value, a block of L iterations is performed:
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@ For each temperature value, a block of L iterations is performed:
e at each iteration, a new string v’ of length m, over ¥, is constructed;
o the energy change AE = H(u',S) — H(u, S) is evaluated, where S is
the input set of strings;
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SIMULATED ANNEALING 3/4

@ For each temperature value, a block of L iterations is performed:
e at each iteration, a new string v’ of length m, over ¥, is constructed;
o the energy change AE = H(u',S) — H(u, S) is evaluated, where S is
the input set of strings;
e if AE <0, u' becomes the new current solution, otherwise v’ is
chosen as current solution with a Boltzmann probability e F only.

Simone Faro and Elisa Pappalardo (speaker)
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© At the end of each block of iterations, the temperature value is
multiplied by a reduction factor ~.
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SIMULATED ANNEALING 4 /4

© At the end of each block of iterations, the temperature value is
multiplied by a reduction factor ~.

The algorithm stops when a suitable termination criterion is met.
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GENETIC ALGORITHMS (GA) were first proposed by [Holland, 1975] as
an abstraction of the biological evolution of living organisms.
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GENETIC ALGORITHM 1/4

GENETIC ALGORITHMS (GA) were first proposed by [Holland, 1975] as
an abstraction of the biological evolution of living organisms.
GAs are based on natural selection and sexual reproduction processes.
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@ An initial population P(t) of random candidate solutions
indy, ..., indpopsize—1 is generated:
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GENETIC ALGORITHM 2/4

@ An initial population P(t) of random candidate solutions
indy, ..., indpopsize—1 is generated:
o each solution is a string of length m over the alphabet ¥;
e each individual in the current population is evaluated by a fitness
function f = m — Hpax, where Hp,ax is the maximum Hamming
distance of s from all strings in S.
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@ A crossover step allows to generate new individuals from members of
the current population:
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GENETIC ALGORITHM 3/4

@ A crossover step allows to generate new individuals from members of
the current population:
e two “parental individuals”are randomly selected; then the crossover
exchanges a randomly selected segment in this pair, so that two new
strings are generated.
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© A mutation operator is applied to each individual:
e it consists in exchanging two random positions in the string.
@ At this intermediate stage, there are two populations, namely,
parents and offsprings. To create the next generation, an elitist
strategy is applied.
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GENETIC ALGORITHM 4 /4

© A mutation operator is applied to each individual:
e it consists in exchanging two random positions in the string.
@ At this intermediate stage, there are two populations, namely,
parents and offsprings. To create the next generation, an elitist
strategy is applied.

Reproduction and mutation steps are repeated until a termination criterion
is met.

Simone Faro and Elisa Pappalardo (speaker)
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Experimental Protocol 1/3

@ We have tested the SA-CSP, the GA-CSP, and the ANT-CSP
algorithms using the azotated compounds alphabet
Y ={A,C, G, T} of the fundamental components of nucleic acids.
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Experimental Protocol 1/3

@ We have tested the SA-CSP, the GA-CSP, and the ANT-CSP
algorithms using the azotated compounds alphabet
Y ={A,C, G, T} of the fundamental components of nucleic acids.
@ In our test platform, we considered a number of input strings
n € {10, 20, 30,40, 50}, and string length
m € {10, 20, ...,50} U {100, 200, ..., 1000}.
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Experimental Protocol 2/3

@ For each of a randomly generated problem instances, all algorithms
were run 20 times.
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Experimental Protocol 2/3

@ For each of a randomly generated problem instances, all algorithms
were run 20 times.

@ The total colony size for the ANT-CSP algorithm as well as the
population size for the GA-CSP algorithm have been set to 10,
whereas the number of generations has been set to 1,500. In the
case of the SA-CSP algorithm, we fixed the number of function
evaluations in 15,000.
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Experimental Protocol 3/3

Our tests have been performed on an Intel Pentium M 750, 1.86 GHz, 1
GB RAM, running Ubuntu Linux.
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Experimental Protocol 3/3

Our tests have been performed on an Intel Pentium M 750, 1.86 GHz, 1
GB RAM, running Ubuntu Linux.

For each length, we computed the average (AVG) of the closest string
scores (HD) found in the 20 runs and the standard deviation o. Also, we
computed the average of the running time (Time) (in milliseconds) over
the 20 runs (AVG).

Best results are reported in bold.
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Experimental Results 1/5

SA-CSP GA-CSP Ant-CSP

Size (m) HD Time HD Time HD Time
AVG o AVG || AVG o AVG | AVG o AVG
10 8.45 | 0.497 | 67.5 6.9 0.3 1840 || 7.05 | 0.218 | 50.5

20 159 | 0.384 | 112 13.3 | 0.714 | 1860 || 13.1 | 0.589 97
30 23.6 | 0.663 | 216 19.6 | 0.583 | 2700 || 19.3 | 0.557 | 200
40 314 | 0589 | 313 25.3 | 0.714 | 3040 || 25.1 | 0.654 | 281
50 38.8 | 0.678 | 428 31.8 | 0.994 | 3220 || 31.6 | 0.805 | 386
100 75.9 | 0.943 | 465 63.4 | 1.31 | 2060 || 62.2 | 0.766 | 433
200 151 1.04 901 129 1.43 2290 124 1.58 855
300 226 1.18 1350 195 2.19 2540 188 1.57 1290
400 301 2.01 | 1780 262 252 | 2720 252 1.68 | 1700
500 375 2.05 2190 330 2.52 2940 317 2.15 2110
600 450 1.87 | 2740 400 3.71 | 3800 385 2.5 2920
700 525 1.68 | 3980 470 3.43 | 4860 || 451 2.95 | 4270
800 600 1.51 | 3720 540 | 4.04 | 4370 || 517 | 2.11 | 3860
900 675 1.19 | 5670 610 | 4.01 | 6110 || 585 | 4.05 | 5690
1000 750 1.53 | 7720 680 | 4.12 | 7850 652 | 3.72 | 7850

Table: Results for inputset of 10 strings of length m.
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Experimental Results 2/5

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time
AVG o AVG AVG o AVG AVG o AVG
10 8.95 | 0.384 211 7.95 | 0.218 | 3560 7.95 | 0.218 132
20 17.1 | 0.589 342 14.8 0.4 3460 14.8 0.4 258
30 24.8 | 0.536 502 21.6 | 0.497 | 3300 21.4 | 0.49 370
40 325 | 0.497 602 28.1 | 0.477 | 3220 28 | 0.632 452
50 40.1 | 0.726 735 35 0.589 | 3300 34.8 | 0.536 546
100 78.4 | 0.663 874 69.5 | 0.921 | 2250 67.7 | 0.853 646
200 154 | 0.917 | 2070 140 1.74 3370 135 | 0.963 | 1460
300 229 1.16 2300 210 2.09 2970 203 1.95 1810
400 305 1.18 4460 281 1.95 4980 272 1.56 3090
500 380 1.25 5270 353 2.52 4930 341 1.65 3510
600 456 1.46 4610 426 1.89 4180 411 1.68 3660
700 531 1.16 6280 499 3.51 4770 482 1.95 4350
800 607 1.32 | 11300 || 572 1.88 9370 553 | 2.84 7780
900 682 1.49 | 13700 || 645 2.58 | 10800 || 623 | 2.51 | 10400
1000 757 1.69 | 15700 || 720 2.79 | 11800 || 695 | 2.49 | 11800

Table: Results for inputset of 20 strings of length m.
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SA-CSP GA-CSP Ant-CSP

Size (m) HD Time HD Time HD Time
AVG o AVG AVG o AVG AVG o AVG

10 9 0 245 8.25 | 0.433 | 2830 8.15 | 0.357 148
20 17.3 | 0.458 518 15.3 | 0.458 | 3460 15.2 0.4 341
30 25.1 | 0.357 772 22.7 | 0.458 | 3520 22.4 | 0.477 508
40 33 | 0.316 985 295 0.5 3720 29.1 | 0.357 638
50 40.9 | 0.539 | 1230 36.9 | 0.357 | 4180 36.1 | 0.436 814
100 79.3 | 0.557 | 1280 72.2 | 0.726 | 2450 70.8 | 0.536 850
200 156 | 0.829 | 4760 144 1.08 5800 140 | 0.975 | 2750
300 232 | 0.831 | 6640 216 1.77 6610 209 1.27 4260
400 308 | 0.829 | 9160 290 | 2.93 8160 280 1.28 5550
500 383 | 0.963 | 11110 || 362 1.66 8830 351 1.79 6760
600 459 1.24 | 12500 || 436 2.14 9800 423 1.95 7610
700 534 1.03 | 14500 || 510 | 2.57 | 10900 || 495 | 2.01 9430
800 610 1.14 | 17700 || 583 2.57 | 12600 || 568 | 2.36 | 10300
900 686 1.69 | 19800 || 658 3.42 | 13200 || 640 | 2.09 | 11400
1000 760 2.24 | 19800 || 731 2.97 | 12400 || 713 | 2.29 | 10700

Table: Results for inputset of 30 strings of length m.
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SA-CSP GA-CSP Ant-CSP

Size (m) HD Time HD Time HD Time
AVG o AVG AVG o AVG AVG o AVG

10 9.4 0.49 428 8.9 0.3 4000 8.55 | 0.497 252
20 17.6 | 0.477 742 159 | 0.218 | 3990 15.8 | 0.433 471
30 25.6 | 0.49 1210 23.1 | 0.384 | 4690 22.9 | 0.384 754
40 33.3 | 0.458 | 1540 30.4 | 0.572 | 4640 30.1 | 0.218 962
50 41.2 | 0.433 | 1940 37.5 | 0.497 | 5070 37 | 0.589 | 1220
100 80 | 0.669 | 2080 73.6 | 0.663 | 3420 71.7 | 0.477 | 1260
200 157 | 0.889 | 5740 146 1.24 5570 142 | 0.669 | 3230
300 233 | 0.889 | 8760 219 | 0.954 | 8640 214 1.05 5550
400 309 | 0.831 | 10090 || 293 1.87 9510 285 1.16 6560
500 385 | 0.748 | 14800 368 2.07 | 11000 358 1.24 7330
600 461 1.01 | 17800 || 441 1.69 | 13100 || 431 1.01 7940
700 536 1.05 | 21700 || 515 2.1 14300 || 503 1.01 | 11700
800 612 1.1 23500 || 590 | 2.34 | 14300 || 577 1.93 | 11300
900 688 1.34 | 26700 || 664 | 252 | 17200 || 649 | 2.31 | 15600
1000 763 1.43 | 30900 || 738 2.62 | 15900 || 722 1.91 | 16000

Table: Results for inputset of 40 strings of length m.
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SA-CSP GA-CSP Ant-CSP

Size (m) HD Time HD Time HD Time
AVG o AVG AVG o AVG AVG o AVG

10 9.45 | 0.497 574 9 0 4390 8.85 | 0.357 334
20 17.8 | 0.433 | 1030 16.2 0.4 4620 16.1 | 0.218 620
30 25.9 0.3 1490 235 0.5 4820 23.2 0.4 899
40 33.5 | 0.497 | 1960 30.9 | 0.357 | 5070 30.6 | 0.497 | 1180
50 41.7 | 0.458 | 2410 38.2 | 0.433 | 5270 37.8 | 0.433 | 1450
100 80.6 | 0.49 2970 74.7 | 0.64 3970 73.3 | 0.64 1750
200 158 | 0.671 | 9090 148 0.91 8530 144 | 0.698 | 5550
300 234 | 0.678 | 14000 222 0.91 10900 216 | 0.889 | 8320
400 310 | 0.792 | 18500 || 297 1.65 | 13100 || 289 1.41 | 11100
500 386 1.16 | 21900 369 1.69 | 14800 362 1.24 | 12900
600 462 1.13 | 21200 444 1.5 14500 434 1.74 | 12200
700 538 1.14 | 26800 || 519 1.9 17300 || 508 1.7 15500
800 614 1.43 | 28900 || 594 29 14000 || 582 | 2.29 | 13900
900 689 1.1 33500 || 667 1.64 | 19700 || 656 | 2.11 | 18800
1000 765 1.19 | 36600 || 742 3.09 | 21000 || 729 1.68 | 18300

Table: Results for inputset of 50 strings of length m.

Simone Faro and Elisa Pappalardo (speaker)
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Figure: Running times plots for n = 20, 30, 40, 50. Notice that, as n increases,

the gap between ANT-CSP and the other two algorithms becomes more

noticeable.
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Conclusions 1/2

o Experimental results show that the ANT-CSP always outperforms
both the GA-CSP and the SA-CSP algorithms both in terms of
solution quality and efficiency.

In particular, in the case of short instances, i.e. for 10 < m < 50, the
ANT-CSP algorithm is from 5 to 36 times faster than GA-CSP.
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Conclusions 1/2

o Experimental results show that the ANT-CSP always outperforms
both the GA-CSP and the SA-CSP algorithms both in terms of
solution quality and efficiency.

In particular, in the case of short instances, i.e. for 10 < m < 50, the
ANT-CSP algorithm is from 5 to 36 times faster than GA-CSP.

@ Furthermore, it turns out that as n increases, the gap between the
running time of the ANT-CSP and the SA-CSP algorithms
becomes considerable.
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Conclusions 2/2

@ We also remark that the ANT-CSP provides results of a better
quality than the other two algorithms in terms of Hamming distance.
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Conclusions 2/2

@ We also remark that the ANT-CSP provides results of a better
quality than the other two algorithms in terms of Hamming distance.

o Finally we note that the ANT-CSP algorithm is quite robust, as its
standard deviation o remains low.
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Future works

Future works will be focused on two fronts:
@ performance improvements;
@ search for heuristic information to improve quality of solutions and
convergence speeds.

Additionally, we plan to extend our algorithm to the Closest Substring
Problem.
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