Using Neighborhood Diversity to Solve Hard Problems

Robert Ganian

Faculty of Informatics,
Masaryk University, Brno, Czech Republic.

SOFSEM 2012
Motivation

- Many interesting graph problems are NP-hard.
- Standard approach: use parameterized algorithms.
 - Idea: let the runtime depend on some structural parameter which “captures the complexity” of the graph.
 - Best known parameter: tree-width (low on “tree-like” graphs)
Motivation

- Many interesting graph problems are NP-hard.
- Standard approach: use parameterized algorithms.
 - Idea: let the runtime depend on some structural parameter which “captures the complexity” of the graph.
 - Best known parameter: tree-width (low on “tree-like” graphs)
- However, recent advances have led to problems which cannot be solved by using tree-width.

A more powerful parameter is needed.
Many interesting graph problems are NP-hard.

Standard approach: use parameterized algorithms.

- Idea: let the runtime depend on some structural parameter which “captures the complexity” of the graph.
- Best known parameter: \text{tree-width} (low on “tree-like” graphs)

However, recent advances have lead to problems which cannot be solved by using tree-width.

A more powerful parameter is needed.

Popular choice: \text{Vertex cover}.
Motivation

▶ Why Vertex cover?
Motivation

▶ Why **Vertex cover**? It’s a big hammer – solves many problems.
Motivation

- Why **Vertex cover**? It’s a big hammer – solves many problems.

- Problem:
Motivation

- **Why Vertex cover?** It’s a big hammer – solves many problems.

- **Problem:**

 Very restrictive.

 The class of graphs with bounded Vertex cover is not very rich.
Motivation

- Why Vertex cover? It’s a big hammer – solves many problems.

- Problem: Very restrictive.

The class of graphs with bounded Vertex cover is not very rich.
Is it possible to somehow generalize Vertex cover and still preserve its power as a parameter?
In ESA 2011, M. Lampis introduced Neighborhood Diversity as a more general alternative to Vertex cover.

Unlike Vertex cover, the class of graphs with low Neighborhood Diversity also contains dense graphs.
In ESA 2011, M. Lampis introduced **Neighborhood Diversity** as a more general alternative to **Vertex cover**.

Unlike **Vertex cover**, the class of graphs with low **Neighborhood Diversity** also contains dense graphs.

Figure: The **Vertex cover** (6) and **Neighborhood Diversity** (5) of a graph.
The goal was to show that **Neighborhood Diversity** can be used to solve the problems where **Vertex cover** is traditionally used as a parameter.

Since **Neighborhood Diversity** is more general than vertex cover, the obtained parameterized algorithms will be efficient on a larger class of graphs.
Goals and Results

- The goal was to show that Neighborhood Diversity can be used to solve the problems where Vertex cover is traditionally used as a parameter.

- Since Neighborhood Diversity is more general than vertex cover, the obtained parameterized algorithms will be efficient on a larger class of graphs.

- However, most parameterized algorithms need to be redesigned from scratch to work on Neighborhood Diversity.

- We provide efficient (FPT) parameterized algorithms for the following problems: p-Vertex-Disjoint Paths, Graph Motif and Precoloring Extension.
The goal was to show that \textit{Neighborhood Diversity} can be used to solve the problems where \textit{Vertex cover} is traditionally used as a parameter.

Since \textit{Neighborhood Diversity} is more general than vertex cover, the obtained parameterized algorithms will be efficient on a larger class of graphs.

However, most parameterized algorithms need to be redesigned from scratch to work on \textit{Neighborhood Diversity}.

We provide efficient (FPT) parameterized algorithms for the following problems: \textit{p-Vertex-Disjoint Paths}, \textit{Graph Motif} and \textit{Precoloring Extension}.

Research in this area has lead to the discovery of a more versatile parameter called \textit{Twin-cover} – faster, easier-to-design algorithms (presented at IPEC 2011).